
ArticuLev: An Integrated Self-Assembly Pipeline for
Articulated Multi-Bead Levitation Primitives

Andreas Rene Fender
ETH Zurich

Diego Martinez Plasencia
University College London

Sriram Subramanian
University College London

Figure 1. ArticuLev provides an integrated pipeline for the identification, assembly and mid-air placement of shape primitives. The developer specifies
the target structure of primitives required ("Target shape", green). The pipeline automatically matches existing primitives to the intended shape (Ana-
lyze). After lifting the primitives, ArticuLev joins them and manipulates the shape in mid-air to match the target pose (Assemble). The levitated shapes
can be programmed and manipulated in real-time (Animate) and easily combined with input/output devices (e.g., Microsoft Kinect and projectors).

ABSTRACT
Acoustic levitation is gaining popularity as an approach to cre-
ate physicalized mid-air content by levitating different types
of levitation primitives. Such primitives can be independent
particles or particles that are physically connected via threads
or pieces of cloth to form shapes in mid-air. However, ini-
tialization (i.e., placement of such primitives in their mid-air
target locations) currently relies on either manual placement or
specialized ad-hoc implementations, which limits their practi-
cal usage. We present ArticuLev, an integrated pipeline that
deals with the identification, assembly and mid-air placement
of levitated shape primitives. We designed ArticuLev with the
physical properties of commonly used levitation primitives
in mind. It enables experiences that seamlessly combine dif-
ferent primitives into meaningful structures (including fully
articulated animated shapes) and supports various levitation
display approaches (e.g., particles moving at high speed). In
this paper, we describe our pipeline and demonstrate it with
heterogeneous combinations of levitation primitives.

CCS Concepts
•Human-centered computing→ User interface toolkits;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’21 May 8–13, 2021 in Yokohama, Japan

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-8096-6/21/05. . . $15.00

DOI: 10.1145/3411764.3445342

Author Keywords
Acoustic Levitation, Mid-air UIs, Pipelines, Toolkits.

INTRODUCTION
Recent advancements in acoustic levitation enable levitation
and movement of multiple lightweight objects like polystyrene
beads [15, 16], with increased adoption for new types of mid-
air displays [29]. To display content in mid-air, some ap-
proaches use sparse sets of beads [23, 24], threads [25, 15] or
even organza cloth, which can also serve as levitating surface
for projection mapping [19]. Most recently, continuous, fully
volumetric content has also been demonstrated using single
[9] or multiple [12] quickly moving beads to exploit the per-
sistence of vision (PoV) effect. Inspired by the potential of
acoustic levitation, the HCI community has started to explore
interaction issues around levitation interfaces [7, 1], geometry
and content creation [19, 6] or even simulators [26].

Unlike traditional displays which are in full control of the
delivery of content (e.g., by illuminating pixels), levitation-
based displays require external physical props (i.e., the beads,
threads or cloth) to be placed within their working volume.
Displaying content in mid-air through levitation is thus hin-
dered, because such levitation primitives need to be identified,
picked up by the system (or a human operator) and physically
transported to the target location via moving acoustic traps
before any content can be presented. Such detection and as-
sembly steps were mostly neglected and never formalized in
previous research and were instead implemented as specialized
ad-hoc solutions. More specifically, there are no approaches to
automatically detect levitation primitives and assemble them

10.1145/3411764.3445342

in mid-air to allow for arbitrary combinations of primitives or
fully articulated animations.

We present ArticuLev, a system for self-supported articulated
shapes which deals with the necessary steps to initialize mid-
air content for interactive levitation applications. The system
supports all the levitation primitives used to date in mid-air
levitated displays (i.e., independent beads, threads and cloth)
and existing content presentation approaches (e.g., animated
shapes, PoV and projection mapping). We achieve this by
considering and exploiting the physical properties of the ma-
terials used as primitives (i.e. light scattering, topology), as
well as the capabilities of the levitator system (e.g., traps
and interactions while merging), resulting in an integrated
pipeline. In ArticuLev, a developer (i.e., in the context of this
paper, a person or group that wants to build acoustic levita-
tion experiences) simply defines target shapes and implements
the logic in Unity3D to animate them, without dealing with
the underlying detection, assembly or acoustic traps. When
placing matching levitation primitives into the levitator, our
system automatically analyses and assembles them, to then
run the developer’s application. Figure 1 shows an example
of the detection and assembly process of a shape consisting
of three primitives (i.e., two threads and a piece of cloth), for
an embodied teleconference application. We contribute the
following:

• A detection approach that not only detects bead locations,
but also how they are connected, e.g., via threads and cloth,
matching them with developer-defined target shapes.
• An assembly method to create animated articulated levi-

tated shapes made of heterogeneous levitation primitives
(by joining primitives via trap merging).
• A set of examples to demonstrate the creation of heteroge-

neous levitated interfaces that combine different types of
primitives (beads, threads, cloth) and display approaches
(e.g., PoV and projection mapping).

In this paper, we describe the ArticuLev pipeline. We explain
the stages to successfully identify beads and the materials that
connect them as they are placed in the levitator, matching
them with easily configurable target shapes. After that, we
elaborate on the assembly steps which involve picking up the
identified primitives and joining them into target shapes. We
then provide a technical evaluation to test ArticuLev’s ability
to detect and assemble various levitated primitives. Lastly,
we demonstrate the wide applicability of our pipeline through
various interactive prototypes, mixing different types of primi-
tives and/or display approaches, as well as existing interactive
concepts like 2D/3D input or rigid body simulations.

RELATED WORK
Levitation has long been a research interest in physics [3].
Several of these approaches have been adopted to create mid-
air levitated displays, trapping physical display elements with
either magnetic fields [10], optical and electromagnetic traps
[30, 2] and, most prominently within HCI, acoustic fields.

Several setups enable exploitation of acoustic levitation fields,
such as transducer-reflector setups creating standing waves
[33] or metamaterials [18, 22], but their limited manipulation

Beads Threads Cloth PoV
[11][16][24] [25][15] [19] [12][9]
[29][17][28]

Figure 2. Types of primitives used to display content in levitated mid-
air displays from previous literature (references in bold are the sources
of the example pictures). JOLED uses beads with two colors to gener-
ate mid-air pixels. Floating Charts uses threads for data visualization.
LeviProps levitates cloth cutouts that represent specific objects. GS-PAT
uses high-speed moving beads to create PoV volumetric content.

capabilities hardly make them suitable for display approaches.
Phased Arrays of Transducers (PATs) provide electronic con-
trol of the phase and amplitude of densely packed sets of trans-
ducers (e.g., 16× 16 transducers). Such transducer boards
are the most prominent approach for acoustic levitation dis-
plays (or other formats such as gloves [13]). Top-bottom PATs
made displays such as JOLED possible [29], which not only
levitated coated particles, but also controlled their orientation.
Controlled phase patterns allowed constrained control of sin-
gle particles and particles attached to threads [25], or clusters
of particles moved as a group [23].

Holographic Acoustic Elements (HAEs) [16] formalized the
definition of acoustic levitation holograms in terms of signa-
ture and focusing patterns, enabling free 3D control of single
particles and modular display systems such as LeviPath [24],
with several particles, each in an independent, small, top-
bottom PAT. HAEs were later extended to allow free 3D con-
trol of several particles [15]. This enabled 3D display shapes
made of particles (e.g. icoshaedrons) and display systems com-
bining such shapes with external (non-levitated) cloth props
[6]. LeviProps [19] extended these by levitating cloth cutouts,
providing an algorithm to optimize the location of beads on the
cloth and enabling levitated 3D projection screens. Fast com-
putation of acoustic levitation fields have allowed the creation
of continuous levitated 3D content by using fast moving beads
(one bead [9, 8] or multiple beads [12]), while simultaneously
creating mid-air haptics and audio.

In summary, previous work enabled new independent func-
tionalities (e.g. PoV content [12], optimal prop design [19]).
However, none of them formalized the initial placement of the
beads and props in mid-air (i.e. a preliminary step required be-
fore their functionality can be leveraged) and none supported
heterogeneous combinations of levitation primitives. Besides,
no prior system has attempted to generate articulated levitated
shapes, i.e., shapes which consists of multiple parts that can
be transformed hierarchically. With this, not only does our
system generalize previous systems that involve connected
beads, but it also enables new forms of interactive levitated
displays. The types of levitation primitives from previous
work (see Figure 2) and the commonly used top-bottom PAT
arrangement (see transducer boards in Figure 3) frame the
scope of our design space.

Figure 3. Setup of our pipeline implementation. We use two transducer
boards with 16×16 transducers each (i.e., 512 total) in a top-bottom ar-
rangement. The ground plane consists of acoustically transparent black
felt. For detection, we use three OptiTrack Flex 13 cameras.

ARTICULEV: OVERVIEW AND REQUIREMENTS
ArticuLev is a self-contained detection and levitation system
supporting the steps required to initialize and run levitation-
based mid-air experiences. Developers can create levitation
scenes by defining various animated target shapes. The devel-
oper defines the initial state of those target shapes (e.g., the
initial posture as in Figure 1, left) and programs the application
logic starting from this initial state (in C# within Unity3D).
Given this input and logic, ArticuLev deals with the required
initialization and execution in three stages. In the Analyze
stage, we use the cameras to detect the primitives laid into the
levitator and match those with the defined target shapes. After
that, the Assemble stage arranges the levitation primitives into
their initial shape and pose. In the final Animate stage the
developer’s logic is executed.

All of this functionality of the pipeline relies on the exploita-
tion of implicit properties of levitated display systems. This
section provides background information on such properties
(i.e., supported materials, hardware and software), as they
influence both the design, operation and applicability of our
approach. Afterwards, we describe the developer’s input and
the pipeline stages in the subsequent sections.

Primitive materials
We use the most common materials from related literature for
our primitives (see Figure 2). More specifically, we use white
polystyrene beads as bead primitives, white cotton thread
for thread primitives, and SuperOrganza for cloth primitives.
Beads and threads provide an almost Lambertian surface, with
diffuse reflections that are easily detectable from any viewing
angle. In contrast, reflections from SuperOrganza contain
much contributions from specular reflections, making it view-
dependent. Those material properties have a direct impact on
the design of our detection algorithm which we will describe
in Detecting beads and connections.

Hardware and software
ArticuLev is not bound to specific hardware and software
components, but there are requirements that need to be met
for our pipeline to work. In this section, we describe those
requirements as well as the components that we chose for our
specific implementation.

Levitator
We use a top-bottom levitation setup (see Figure 3), which
is the most commonly used setup in current levitation expe-
riences [16, 19, 12, 9, 1]. The setup consists of two 16×16
arrays of 40KHz ultrasound transducers, created as an ex-
tension of the open source platform Ultraino [14]. We use
similar voltage (20V) and transducers as CE certified prod-
ucts that are safe for public use (e.g., Ultraleap STRATOS
[34]). This top-bottom setup provides a working volume of
approximately 10cm×10cm×18cm at the center of the levi-
tator [19] and produces acoustic traps that are roughly 25mm
wide horizontally [15, 9]. This determines the minimum dis-
tances at which beads (individual or as part of primitive) can
be laid, as to allow independent picking and manipulation
(to avoid unintended trap merging). We also use a layer of
black felt (~0.2mm thickness, acoustically transparent and IR
absorbent) placed 3cm above the bottom array. This ground
plane acts as a support structure to lay the primitives and as a
dark background for detection.

For generating acoustic traps, we implemented a Naive multi-
point levitation algorithm [15, 12] multi-threaded on the CPU
in C#, computing up to 3K solutions per second (we use a
laptop with six i7 cores / twelve logical processors at 2.2GHz).
This update rate provides basic support for PoV content. Artic-
uLev is agnostic to the underlying algorithm used, i.e., other
algorithms can be used to improve stability and update rate
(e.g., IBP [15] or GS-PAT [12], which is GPU-based and sup-
ports over 10K solutions per second).

Camera setup
We used three infrared-based cameras (OptiTrack Flex 13 by
NaturalPoint [21], 1280×1024 pixels each), as a widely avail-
able tracking solution. These cameras are robust in terms of
varying visible light conditions and have the ability to dynami-
cally adjust IR lighting intensity and exposure time, required to
adapt captured images to the optical properties of the potential
primitives to be detected. The camera intrinsics and distortion
coefficients are provided by the manufacturer. Therefore, we
only need to compute the camera extrinsics by estimating one
homography [4] per camera, for which we use the four corners
of our ground plane. Other IR or RGB cameras can be used,
assuming equivalent capabilities are provided.

Software frameworks and libraries
The majority of the system is implemented in the Unity3D
Game Engine, to easily exploit its 3D programming capabili-
ties and to enable a wide variety of levitation applications. The
overall dataflow implementation is based on the Velt frame-
work [5] (Unity plugin), which facilitates multi-threaded cam-
era frame and 3D input processing. Therefore, those and other
orthogonal functionalities (e.g., projection mapping) are not
integral parts of the ArticuLev pipeline. Lastly, we use alglib
[27] to solve linear equations within various pipeline steps.

Figure 4. Creating an example ArticuLev application with an animated
fish and a line and sinker. Left: Velt nodes are used to describe the
target shapes in the application, specifying their bead positions, connec-
tions and cloth outlines. The ShapeGroup node gathers the two target
shapes and the ApplicationLogic handles animations or interactive
experiences. Top-right: Unity scene view, allowing placement of target
shapes. Bottom-right: Resulting application.

DEVELOPER’S INPUT
Development with ArticuLev requires basic Unity skills. Our
target group of developers includes programmers, HCI re-
searchers and digital artists. Figure 4 illustrates the developer’s
creation process, defined visually using Velt nodes (boxes in
Figure 4, left). In the example, the developer creates two target
shapes (one for the fish, one for the line), each represented
by one or more nodes. The developer could directly type
in 3D coordinates or load a 3D mesh for the bead locations
and connections or program their locations (e.g. for algorith-
mically generated props). However, ArticuLev provides and
encourages the use of higher-level tools. For instance, target
shapes can be picked from a set of parameterized standard
targets (e.g., a simple thread with two beads, triangle or square
shaped cloth and more). In the example, the line an sinker is
defined by selecting a built-in 2-bead SimpleThreadTarget
and by specifying its length. Developers can also define their
own shapes with a 2D point input node. As illustrated in
Figure 4 (Left), the creation of the fish simply requires the def-
inition of four beads. In this case, developers can also use an
image loader node (Figure 4) to upload a binary target image
representing the Fish. This provides a visual reference to spec-
ify the beads and ensures target shapes will match only cloth
primitives with specific cloth cutouts, as detailed in Matching
detected primitives with target shapes. The specified local
positions should roughly match the positions of the beads on
the fabricated prop to ensure robust matching. Of note, it is
currently the developer’s responsibility to find a reasonable
bead arrangement when attaching them to the cloth. Other
tools like LeviProps [19] can be used independently to verify
and automatically adjust the 2D locations of the beads on the
cloth so as to fabricate props with optimal trapping stiffness
before passing them to ArticuLev.

Given both targets, the ShapeGroup node encapsulates them
in order to centralize access for the application. Finally, the
ApplicationLogic contains the developer’s C# code for an-
imating the shapes during application runtime.

Beads & connections Hierarchy

Figure 5. Resulting pipeline input for an articulated shape. Left: The
developer visually defines bead positions (yellow), connections and bones
(Face, Arm1 and Arm2). Right: Resulting hierarchical representation,
with beads assigned to bones (orange), and one Unity node per bone.

The previous example (Figure 4) contained one primitive per
target shape (fish prop and thread). Besides such rigid target
shapes, developers can also define more complex articulated
target shapes as shown in Figure 5. To do this, the devel-
oper needs to provide a list of bead positions and connections
as well as a hierarchy of bones (programmatically or in the
UI). Conceptually, this is closely related to skeletal computer
animation (i.e., a rotating a bone also rotates/translates its
child-bones). That is, each bone contains a list of beads, a
parent bone and pivot point (bead) to rotate around (e.g., the
Shoulder beads in Figure 5).

STAGE 1: ANALYZE
This first stage involves no levitation. It consists of the detec-
tion of the available primitives (using infrared cameras) and
the matching of those primitives with the target shapes.

Detecting beads and connections
A detection approach for a typical levitation setup must con-
sider the different material properties of the levitation primi-
tives, which means it has to meet the following requirements.
First, a multi-pass approach is required, each using differ-
ent camera settings to detect different materials. Polystyrene
beads provide a round and almost Lambertian surface, making
them easy to detect even with low exposure values from any
viewing angle. However, a longer exposure is required in order
to deal with the thinness of threads and the semi-transparency
of SuperOrganza (cloth). Second, a multi-camera arrangement
is required, to detect thread and cloth primitives. Particularly,
thin threads tend to have gaps (non-detected sections) in the
individual camera streams. The shininess of SuperOrganza
produces bright specular highlights for some viewing angles
while reflecting almost no light to other directions. Finally, the
primitives are typically not exactly lying on a flat plane (e.g.,
different bead sizes, thread/cloth bending). Thus, homography
solutions cannot be applied directly. Other approaches, such
as Steger’s accurate line tracing [32] are not applicable due
to thread gaps or intermediate beads. All of these challenges
and requirements do not directly fit the capabilities of existing
commercial software solutions (e.g., OptiTrack Motive). Our
solution instead uses OptiTrack’s low-level CameraSDK [20]
to directly access and adjust the camera streams, making use
of a multi-camera detection algorithm involving three different
passes (one per primitive type, each using different camera
settings), as described in the following.

W
or

ld
 s

pa
ce

Left

Right

Back
Ca

m
er

a
im

ag
e

sp
ac

e
Line segments

1 23 45
Pos

Length
Pos Pos Pos Pos

Length Length

1

2

3

45

Figure 6. Example for the thread detection algorithm. The algorithm
marches between each pair of beads in 3D space while projecting line
segments into the camera spaces of each camera. For each projected
line segment in the binarized camera images, we count the number of
bright pixels along the projected line. As seen in the right column, not
all cameras need the thread to be entirely visible for the algorithm to
work. The output is an undirected graph with bead positions as nodes
and connections including their lengths as edges (bottom left).

Detection pass 1: Bead positions
This pass uses a short camera exposure (65ms in our setup),
revealing beads, but not threads or cloth (due to less reflec-
tions from their materials). We use CameraSDK’s built-in
2D object detection to retrieve circular blobs in each camera
stream and unproject them as follows. Given each camera as
pinhole model (with their intrinsics and extrinsics), we pro-
duce 3D rays that have the camera position as origin and pass
through the blob’s center in the image plane. Calculating the
intersections of those rays from across cameras then gives us
the bead locations. Since in practice the rays (created from
the blob pixels) do not actually intersect, we use alglib [27] to
solve the linear equations for approximating the intersection.
Given a pair of rays, the calculated optimal solution for those
equations is the point that is closest to both rays. The resulting
set of 3D bead positions is used as the input to the next passes,
which focus on detecting connections between beads.

Detection pass 2: Thread connections
After bead positions from pass 1 are known and stored, the
system detects the connections between them. This second
pass uses a longer camera exposure, which makes threads ap-
pear brighter in the camera streams, but without overexposing
(255ms in our setup). In order to deal with potential gaps in
the threads within the camera streams (e.g., camera "Right"
in Figure 6), this pass needs to combine the inputs received
by all cameras to search for connections between each pair of
beads. For each pair, we define a stepping direction vector that
initially points from the first to the second bead to then step
in that direction with a fixed step size in world space. At each
step, we define a 3D line segment orthogonal to the direction

vector (see red lines in Figure 6). We then sample such line
segment, projecting its 3D world coordinates into all three
camera image spaces (see Figure 6, right). If a bright pixel is
hit in any of the camera images, we continue stepping towards
the target bead (creating other line segments). Otherwise, the
beads are considered not connected. To account for curved
threads, we slightly adjust the stepping direction depending on
where we find bright pixels along the segment. These connec-
tions and the previously computed bead locations produce as
undirected graph. The nodes of this graph are bead positions.
The edges of the graph indicate thread connections and store
the estimated length of the (potentially curved) thread. This
graph (e.g., Figure 6, bottom) is later used for matching.

Detection pass 3: Cloth connections
Due to uneven scattering of reflections from cloth, the thresh-
olded images typically contain holes (see Figure 7). Therefore,
we combine multiple cameras as with thread detection. If
the developer-defined target shapes only feature convex cloth
primitives (e.g., triangles or squares), then the second detec-
tion pass would be enough to identify those as well. However,
with arbitrary cloth cutouts (e.g. shapes in Figure 2.Cloth
or Figure 9), connections between beads on the same cloth
could be missed, e.g., due to intentional holes like the skull’s
eyes in Figure 9. To also support such non-convex shapes,
we implemented a simple cloth shape reconstruction from
multiple thresholded images, which not only detects beads
attached to the same cloth, but also retrieves the fine grained
shape of the cloth from the partial views available to each
camera. Our shape reconstruction is a variance of the flood
fill approach, which additionally takes the 3D position of the
attached beads into account. We rasterize a 512×512 pixels
top-view of the ground plane (16cm × 16cm), with each pixel
(u,v) containing a binary value (Cloth / NoCloth, initially
set to NoCloth). To initiate a flood fill, we choose an arbitrary
(not yet processed) detected bead and start from its position in
rasterized image space. To check a pixel (u,v), we first convert
it to its x-y-z (right-up-forward) world coordinates. We calcu-
late the x and z coordinates based on the image resolution and
the ground plane dimensions (x = u/512 ·16, z = v/512 ·16).
The y-coordinate is estimated as a weighted average of the y
coordinates of the beads in the local region. We then perspec-
tively project the world coordinates to pixel coordinates pcam
in each camera stream. Finally, if pcam is a bright pixel in any
stream, then the rasterization is set to Cloth at (u,v) and the
flood fill continues from neighboring pixels that have not been
visited yet. All beads that are reached within the same flood
fill comprise a connected component in the undirected graph.

Left BackRight

Figure 7. Example for two squared cloth cutouts seen from the three
cameras. Due to uneven scattering from the cloth primitives, the thresh-
olded images in each of the independent camera feeds are incomplete,
i.e., generally each camera receives different reflections.

Matching detected primitives with target shapes
The detection above produces an undirected graph that incor-
porates bead positions as well as types and lengths of con-
nections irrespective of the target shapes. ArticuLev matches
the detected shapes with the developer’s input in two separate
steps: (1) Assigning detected connected components to tar-
get shapes and (2) within each assignment, mapping detected
beads to those in the target shape. Mapping is necessary, be-
cause beads are detected and stored in an (undefined) order
that generally differs from the developer-defined order in the
target shapes. In simple cases, comparing the topologies of the
detected connected components and the target shapes primi-
tives is sufficient to find a valid assignment and a mapping. For
instance, in the example in Figure 8, it is sufficient to detect,
which beads are connected in order to distinguish between the
disk (three connected beads) and the two threads (two con-
nected beads each). After assignment, proximity can be used
for mapping beads. However, if cloth cutouts as in Figure 9
are used, then different primitives can have the same connec-
tion topology even if they represent different shapes. Also, a
topology might contain several axis of symmetry, even if the
cutout does not. For instance, the fish and the skull in Figure 9
have the same diamond shaped bead topology with rotational
symmetries. ArticuLev uses the template image provided by
the developer and the detected cloth shape reconstruction for
disambiguation. The detected beads are used as anchor points
to transform from the provided developer’s definition to the
shape reconstructed. We iterate over all combinations of map-
pings between detected and target beads and use singular value
decomposition (SVD) [31] to estimate a rigid transformation
between both definitions. This usually already discards many
bead mappings that cannot be transformed (rigidly) into each
other. Among the remaining potential mappings, we compute
the overlap of pixels between the transformed reconstruction
and the provided template, choosing the bead mapping with
the largest overlap (Figure 9, right).

Assign to target Map beads

Figure 8. Once beads and connections are detected, ArticuLev matches
them with the target shapes. First, ArticuLev assigns detected primitives
(bottom) to the target shape (top). Second, because beads are detected
in an undefined order, ArticuLev needs to map the detected beads to the
defined target beads.

Cloth detected and in template

No cloth both Detected cloth outside template

No cloth inside template

54.6%

68.3%

84.3%

62.5%

64.4%

71.6%

Template Detected

Figure 9. Shape reconstruction and target matching of a fish and a
skull cloth cutout. Left: ArticuLev uses the shape reconstruction of the
detected cloth primitives to distinguish between target shapes with equiv-
alent topologies. Right: we compute the overlap of the shape reconstruc-
tions with the templates to identify the correct target shape (fish versus
skull) and correct orientation (rows).

STAGE 2: ASSEMBLE
After all primitives are identified and matched with their target
shapes, ArticuLev can start levitating and assembling them
accordingly. As shown in Figure 10, this involves three steps:
Lift, Join and Pose.

During the Lift step, beads in all primitives are levitated verti-
cally to remove contact from the ground plane. This step first
creates traps at every bead location, smoothly increasing their
amplitudes (trapping forces) over an adjustable amount of time
(200ms, in our setup) to then lift them a few centimeters. With
this, we avoid friction with the ground plane in later steps.

Target shapes can be represented by single props (Figure 4)
or by joining multiple primitives (Figure 8). We will discuss
the implications for each option in Single-props versus joining
primitives. If multiple primitives per target are used, then the
Join step is needed to combine the primitives in mid-air by
selectively merging traps. ArticuLev always merges the traps
of the primitives horizontally to improve stability. Figure 11
visualizes this for the case of our levitator and the IBP algo-
rithm [15], plotting the stiffness (i.e., trapping strength) of two
traps approaching each other horizontally and vertically (top)
as well as showing pressure fields of horizontally approaching
traps (bottom). This is a symmetric case, i.e., the reported stiff-
ness is the same for each of the two traps. Traps approaching
along the vertical axis will interfere destructively, suffering
massive drops in stiffness at some points (e.g. ∆d = 6mm). In
practice, particles will refuse to move to such points, being
instead attracted to points of high stiffness (i.e. peaks at ∼ 4.2
or ∼ 8.5 mm). In contrast, traps approaching horizontally
present a much smoother evolution of stiffness, remaining
almost constant for ∆d > 8.5 mm, with a sudden increase at
lower distances (∆d < 8.5 mm). This increase is explained
by looking at the evolution of the pressure landscape as traps
approach each other (Figure 11, bottom). While traps remain
initially separated, at ∆d ' 8.5mm these get merged and the
beads within will be attracted to each other (i.e. climbing

Figure 10. Steps required to assemble target shapes: Lift detaches the primitives from the ground plane using linear (upwards) paths. Join then
assembles them into the required target shape, applying rigid movements and connecting joints along the horizontal direction. Pose finally places the
shape into the initial pose required by the application logic.

towards ∆d ' 0). As a result, the Join step merges primi-
tives horizontally while using a relatively high approaching
speed (e.g. >0.1m/s in our setup). This avoids the attraction
in last stages of merging (∆d < 8.5 mm) from pulling along
connections, which would cause other traps to fail.

Finally, the Pose step interpolates the pose of the shape to
match their initial target pose, so that the application can start.
This typically involves a smooth rotation and translation for
each target shape.

Levitation paths
All of the motions required for this stage are supported by
levitation paths. These allow the position of each trap to be
updated smoothly, ensuring small sub-millimeter displace-
ments between each time step to prevent beads from falling
between updates. We implemented three generic built-in types
of levitation paths:

• Linear interpolates all bead positions linearly, with updates
not exceeding the maximum step size. This is sufficient to
support the Lift step in Figure 10.

• RotationTranslation transforms a group of beads from
an initial to a target position/orientation while maintaining
all distances between beads (i.e. rigid-body transformation).
The maximum step size is considered in each update for all
beads (i.e. the bead furthest from the pivot point dictates
how fast the shape can rotate). We use this interpolation,
e.g., in the Join step in Figure 10.

• Articulated generalizes RotationTranslation by
defining a hierarchy of rigid transformations, required for ar-
ticulated target shapes. This interpolation maintains relative
distances among beads assigned to the same bone, while
all updates are still limited by the maximum step size. The
Pose step in Figure 10 is an example for such a motion, with
the beads in each bone (cloth, threads) retaining relative
distances within the bone (see L1, L2), but each arm can
rotate around the cloth.

We always calculate the rigid motion paths based on the de-
tected bead positions on the physical prop, because they usu-
ally slightly differ from the local positions described in the
target shapes (e.g., beads inaccurately attached to cloth), i.e.,
the pose, but not necessarily the beads, match the target.

Figure 11. Traps merging in top-bottom levitators. Top: Trapping stiff-
ness varies as traps approach each other along the vertical (blue) or hor-
izontal (red) directions, with the latter providing smoother transitions.
Bottom: Pressure fields of horizontally approaching traps. The traps re-
main separated at longer distances (from the left, 25, 20, 15 and 10 mm),
merging as a single trap at shorter distances (right image, 5mm).

STAGE 3: ANIMATE
This stage starts once all primitives have been levitated to
physically match the initial state of the target shapes de-
fined by the developers. At this point, a callback function
in ApplicationLogic (see Figure 4) will be invoked at ev-
ery frame (60Hz), which developers can use to program their
logic. ApplicationLogic also provides access to the Unity
nodes created for each target shape and bones, which the de-
veloper can use to animate the scene. Alternatively, developers
can do this by using the levitation paths described earlier, en-
suring interpolations comply with maximum step sizes defined.
Independently of the method used, ArticuLev automatically
updates the underlying traps according to the state of the scene.
Since the logic is implemented in Unity and Velt, the developer
has access to any existing functionalities, such as input devices
like Leap Motion or Kinect or projection mapping techniques.
More information about the communication with the pipeline
can be found in the system architecture appendix.

Figure 12 illustrates a concrete envisioned application - a
levitation-based teleconferencing system. The application
combines high resolution projection mapping with a physi-
calized way of expressing the body language of the remote
participant. This example uses a disk-shaped piece of cloth
and two threads to form an articulated shape. The logic is

Figure 12. A teleconferencing example based on ArticuLev. A levitated
disk serves as projection surface to display the users’ faces. The threads
reflect the users’ gestures to physicalize their body language.

programmed to manipulate the bones of the articulated tar-
get shape to match the arms, as tracked with a Kinect device
(e.g. threads can freely rotate to convey hand/arm gestures).
Velt handles the projection mapping and the acquisition of the
RGB-D stream from Kinect.

Single-props versus joining primitives
A target shape in a running ArticuLev application can be phys-
ically represented either as single pre-assembled prop or by
joining multiple primitives in mid-air (Join step in assembly).
For instance, instead of assembling the the target shape in
Figure 10 and Figure 12 from three primitives, the arm threads
could instead be directly sewed into the beads of the cloth. Fig-
ure 13 shows the general difference. While this is equivalent
for the target shapes (ArticuLev will either pick up a single
prop or join multiple primitives, as long as they yield the same
target shape in the end), this does affect the behavior of the
primitives during articulated movements during animation.

The first option (single pre-assembled prop) generally requires
less traps during the assembly process (allowing stronger traps)
and could be visually more appealing for some cases, as strictly
only one bead is located in each trap. However, this connection
(thread sewn onto bead) can constraint the articulation, adding
tension to the bead as the arm is moved and hence can limit the
possible animations. In the second option (joining primitives),
producing target shapes by joining simple primitives (e.g. tri-
angles, threads) can allow reusing a small set of primitives

Figure 13. Target shapes can be physically displayed by fabricating pre-
assembled props (left) or by joining multiple primitives into a bigger
shape (right). In both cases, the "Fixed bead" (brown) cannot rotate rel-
ative to the cloth it is attached to. In a pre-assembled shape (left: thread
directly sewed into brown bead), rotating the bead at the lower end of the
thread causes unwanted bending forces on the thread. When joining sep-
arate primitives (right: separate thread primitive with two beads), beads
share a trap, but retain their degrees of freedom (see green "Merged
bead"). This allows the thread primitive to rotate independently of the
cloth, making articulated movements more stable.

to produce a range of target shapes. More importantly, beads
sharing a trap will retain their degrees of freedom in terms
of rotation, removing constraints from the bones, which can
improve stability (e.g., arm rotations Figure 12).

While the application logic remains the same, these differences
in behavior should be taken into account when fabricating the
props and primitives. The differences are illustrated in motion
in Video Figure A (in supplemental material).

TECHNICAL EVALUATION
We conducted an in-lab evaluation, in order to characterize
the capabilities of ArticuLev across each of its different stages
and for different combinations of levitation primitives. More
specifically, we designed six test applications that make use
of all primitive materials individually and in pairs (in Table 1
from left to right: bead-only, bead-thread, bead-cloth, thread-
thread, thread-cloth, cloth-cloth). Our tests strictly only run
one cycle per trial to measure the success rate. Our real-time
implementation could trivially identify and correct failure
cases, by restarting the pipeline (i.e., introducing only slight
delays in practice). However, our strict one-cycle tests were
used as means to identify the causes of failure and to propose
further improvements to both software (stages) and primitive
materials (see Limitations and future work). We conducted the
tests in groups of 10 trials per application, collected across 3
consecutive days (i.e. varying lighting conditions, system cali-
brated at the beginning of each day), resulting in 30 collected
trials per test application. Each trial assessed ArticuLev’s ca-
pability to detect and assemble the primitives required, and it
involved two operators - the experimenter and a non-expert
operator (i.e., no computer science, research or engineering
background). The non-expert placed the required primitives
onto the levitator’s ground plane, out of sight of the experi-
menter, who then started ArticuLev and registered the results.
The non-expert operator could place the props arbitrarily, but
was made aware of the working volume of the device. Further-
more, the non-expert was instructed to place primitives with
no overlap and with a minimum distance of ∼ 25mm between
beads (see Hardware and software).

Table 1 shows the results of our evaluation and serves as the
reference table throughout this section. We split our results in
two groups: Primitive success rates and Stage success rates.

With the Primitive success rates, we report the rate of success
over all individual primitives across trials regardless whether
the stage was successful. Detection in primitive success rates
are the percentages of primitives, which were correctly iden-
tified and matched to target shapes. For instance, detecting
30 out of 60 individual bead primitives across all trials would
mean 50% primitive success rates. Similarly, we also report
the overall number of individual primitives that physically
reach their target shape. Assembly reports the average and
standard deviation in relation to the total number of primitives
across trials within each test application.

With Stage success rates, we describe the rate of complete
success within a pipeline step. For instance, detecting all beads
in an application counts towards the success, whereas missing
just one bead does not count towards success. Analogously

Beads 6 5 6 5 5 7
Connections 0 2 6 3 4 9

Primitive success rates %
Detection 98 100 100 100 100 98
Assembly 93±10 83±17 98±8 76±28 83±23 82±27

Stage success rates %
Detect: Beads 90 100 100 100 100 93

Connections N/A 100 93 100 100 93
Assembly: Lift 70 83 93 74 77 80

Join+Pose 66 50 63 57 66 66

Table 1. Summary of results obtained from our evaluation. Columns
represent each of the target shapes tested, while the rows represent shape
input parameters (beads and connections) and measured parameters for
each stage. All percentages in the stage success rates are in relation to
the total amount of trials independent of the success of the previous stage,
i.e., they can only remain equal or get lower in subsequent stages.

in assembly, trials in which any of the primitives failed to
reach their target positions are counted as unsuccessful. For
instance, in the cloth-thread example (5th from the left) if
the thread or the cloth failed, it does not count towards the
success rate. All percentage entries throughout the stages
are always in relation to the total amount of primitives of the
respective test application. That is, a failure in a step counts as
a failure in later steps. For instance, a bead that is not detected
is also not lifted. Hence, percentages can only remain the
same as the previous stage in best case (no further failures
in the step) or get lower. This also implies that the last row
of the stage success rates (Join+Pose) shows the percentage
of trials, which where completely successful, i.e., all the way
from detection to reaching the target pose. In the following,
we discuss the stage success rates in more detail.

For the Detection stage, we tested the number of trials, in
which all beads and connections were correctly identified by
the system. We further separated this stage into the detection
of the Beads and their Connections. This stage shows robust
results, with high detection rates for all beads and connections.
The few failures were related to incomplete reconstructions
for cloth primitives (i.e., particularly when placed at the lim-
its of the working volume, with worse illumination), or for
primitives placed too closely together (i.e., beads rolling to-
wards other primitives after placement). No false positives
(non-existing beads or connections) were produced by the
system.

We split the Assembly stage test into two steps: Lift and
Join+Pose (whereas only the last three test applications in-
clude a Join step). A large part of the assembly failures oc-
curred during the Lift step, usually due to primitives sticking to
the ground plane (i.e., micro-fibers in primitives or felt, electro-
static attraction due to friction). Other errors within Assembly
were caused by primitives interacting during the joining or
posing steps, either by directly hitting them or by distorting
nearby traps holding them (e.g. a bead going near/through a

thread primitive). Thus, collision avoidance mechanisms for
levitation [28] should be considered to avoid these cases. In
other cases, failures could be related to specifically ill-posed ar-
rangements of the traps (some arrangements lead to destructive
interference [19]), which can be alleviated using alternative
levitation algorithms (e.g., IBP [15] or GS-PAT[12]).

Evaluation summary
We evaluated the ArticuLev pipeline with six target combi-
nations with our specific setup. The overall results vary ac-
cording to the test application, while the detection is close to
100%, only 50% - 66% of the cases successfully reach the
final stage. Our system is agnostic to the low-level trapping
algorithm and the number of cameras. In general, adding more
cameras and hence, more redundancies would further improve
the detection. However, from the results, we can conclude that
three cameras with thresholded streams are already sufficient
to reliably detect beads and connections with commonly used
levitation materials. In particular, we can confirm that with
the reflection properties of organza, generally at least one out
of three cameras receive enough light to detect the cloth, even
when placed at different orientations. At the same time, beads
that are attached to organza can still be detected by all cameras
as those are still brighter than the organza reflections from
all angles. While low-level improvements for trap generation
are possible, the overall ArticuLev pipeline with our used
setup was able to persistently detect levitation primitives and
generate valid assembly sequences.

EXAMPLE COMBINATIONS OF PRIMITIVES
We demonstrate the potential of ArticuLev by implementing
a number of levitation-based prototypes (see Figure 14). All
examples were created using Velt nodes (see Figure 5) and
simple application logic. They showcase either individual
primitives or combinations primitives with of different materi-
als (e.g., bead-thread, thread-cloth) and/or display approaches
(static or fast moving PoV content), showcasing ArticuLev’s
unique ability to support heterogeneous levitated interfaces.
We invite the reader to see all prototypes in motion in the
supplemental video of this publication (main video).

The first three examples (Figure 14.A) illustrate single cloth
primitives The airplane (Left) shows a flat prop, while the
top and bottom beads in the skull (Center) are slightly bent
for a curved prop appearance. The handcuffs (Right) illus-
trate an articulated, single cloth shape (i.e., one bone per ring,
another for the connecting chain), allowing independent con-
strained manipulation of each part. This example is similar to
those supported by LeviProps [19], i.e., their algorithm can
be used to optimize the bead placement when fabricating this
type of cloth-based props. However, as opposed to LeviProps,
our system can uniquely identify the correct orientation when
posing the props and our approach is robust in terms of inac-
curately placed beads or differently sized shapes. The next
two examples (Figure 14, B and C) illustrate the use of ar-
ticulated thread primitives, and the two alternatives to create
articulations (single prop or joined primitives, as in Figure 13).
In Figure 14.B, one thread with three beads and one thread
with two beads are joined and animated to reflect the move-
ments of the user’s index and thumb fingers (tracked by Leap

Motion). In contrast, Figure 14.C shows an articulated stick
figure made of a single pre-assembled prop, animated with
a mouse. The subsequent examples (Figure 14, D, E and F)
illustrate combinations of different types of primitives and/or
display approaches. Figure 14.D combines cloth and thread
to represent a fish and fishing line, animated independently
(e.g., swimming fish animation). Figure 14.E combines three
pieces of cloth into one articulated shape, creating a flying
skull with a wing flap animation. Finally, (Figure 14.F shows
a thread and a fast-moving bead creating a circle at PoV rates.
In addition, a slow sinusoidal rotation is applied to both the
thread and bead, to produce an oscillating pendulum. Finally,
Figure 14.G illustrates one example for the incorporation of
Unity functionalities - the physics engine applied to a square
cloth primitive. The motion of the square mimics that of a
rigid body, bouncing off the ground plane and invisible walls
around the levitator’s working volume.

While the built-in ArticuLev functionalities were sufficient
to produce the prototypes that we described in this section,
ArticuLev can be extended programmatically, so as to sup-
port specialized shapes and assembly sequences (e.g., folding).
More details about the modular pipeline including a more com-
plex example can be found in the system architecture appendix
and in Video Figure B (both in supplemental material).

LIMITATIONS AND FUTURE WORK
While the pipeline provides a self-contained system enabling
novel types of levitated applications, its individual components
can be improved and further generalized in the future. Our
evaluation showed how the inclusion of collision avoidance
strategies [28] to the Assemble stage could prevent some fail-
ure cases. In addition, adopting recent levitation algorithms
like GS-PAT [12] could further increase robustness and pro-
vide full PoV content support (i.e. performance should be
increased to update the traps at >10K updates per second).
Another possible future directions would be the disassembly
of primitives to morph between shapes in mid-air.

Further improvements could be attained by exploring alterna-
tive material choices for the levitation primitives. Some Lift
failures were caused by tangling micro-fibres from thread prim-
itives (cotton) and the ground plane (felt). Electrostatic effects
can also hold the primitives (i.e., both polystyrene and Or-
ganza produce triboelectric effects), and triboelectric-neutral
materials should be considered. The optical properties (e.g.
light scattering) of such alternative materials should also be
revisited and may require adaptations to the detection pipeline.
Similarly, using other levitator arrangements (e.g. four boards,
as in PixieDust [23]) not only changes trap topologies and
assembly strategies when merging traps (see Figure 11), but
might also affect safety during usage.

Even if ArticuLev can facilitate initialization and creation of
levitated experiences (e.g. visual nodes, Unity integration),
its target group still focuses on developers and might not be
suitable for content creators without any programming back-
ground. During development, we remotely collaborated with
an artist to create an interactive experience, which is as a first
step to bring in relevant perspectives and facilitate further
adoption of levitation experiences.

A) Single cloth cutouts

B) 2x thread C) Thread structure

D) Cloth + thread E) 3x cloth

F) Thread + PoV bead G) Real-time physics

Figure 14. Example prototypes created with ArticuLev to showcase the
supported primitives and heterogeneous primitive combinations.

CONCLUSION
We presented the integrated detection and levitation pipeline
ArticuLev, which unifies various levitation approaches from
previous work and enables novel combinations of shape primi-
tives. We tackle a problem that is unique to levitation based
mid-air displays, as those rely on external props and their
assembly to be able to display content. Our pipeline detects
connections between beads with an approach that is carefully
designed around the requirements of a typical levitator setup
and the materials of shape primitives. Furthermore, with our
examples, we demonstrated how our pipeline generalizes pre-
vious levitation-based mid-air displays and allows novel com-
binations of shape primitives. In addition, with our shape
assembly approach, we present the first acoustic levitation sys-
tem to assemble animated fully articulated shapes. We believe
that our pipeline and formalization are an important step to
allow effective application development for acoustic levitation
based mid-air displays.

ACKNOWLEDGEMENTS
This work was supported by the EU’s H2020 ERC Advanced
Grant (787413), ERC Proof of Concept grant (841781), the
Royal Academy of Engineering Chairs in Emerging Technol-
ogy Program, and the AHRC UK-China Research-Industry
Creative Partnerships AH/T01136X/2. We thank Eimontas
Jankauskis for creating the stylizations used in Figure 13 and
in Video Figure A.

REFERENCES
[1] Myroslav Bachynskyi, Viktorija Paneva, and Jörg

Müller. 2018. LeviCursor: Dexterous Interaction with a
Levitating Object. In Proceedings of the 2018 ACM
International Conference on Interactive Surfaces and
Spaces (ISS ’18). Association for Computing Machinery,
New York, NY, USA, 253–262. DOI:
http://dx.doi.org/10.1145/3279778.3279802

[2] Johann Berthelot and Nicolas Bonod. 2019. Free-space
micro-graphics with electrically driven levitated light
scatterers. Opt. Lett. 44, 6 (Mar 2019), 1476–1479. DOI:
http://dx.doi.org/10.1364/OL.44.001476

[3] EH Brandt. 1989. Levitation in physics. Science 243,
4889 (1989), 349–355.

[4] Elan Dubrofsky. 2009. Homography estimation.
Diplomová práce. Vancouver: Univerzita Britské
Kolumbie (2009).

[5] Andreas Fender and Jörg Müller. 2018. Velt: A
Framework for Multi RGB-D Camera Systems. In
Proceedings of the 2018 ACM International Conference
on Interactive Surfaces and Spaces (ISS ’18).
Association for Computing Machinery, New York, NY,
USA, 73–83. DOI:
http://dx.doi.org/10.1145/3279778.3279794

[6] Euan Freeman, Asier Marzo, Praxitelis B. Kourtelos,
Julie R. Williamson, and Stephen Brewster. 2019.
Enhancing Physical Objects with Actuated Levitating
Particles. In Proceedings of the 8th ACM International
Symposium on Pervasive Displays (PerDis ’19).
Association for Computing Machinery, New York, NY,
USA, Article Article 2, 7 pages. DOI:
http://dx.doi.org/10.1145/3321335.3324939

[7] Euan Freeman, Julie Williamson, Sriram Subramanian,
and Stephen Brewster. 2018. Point-and-Shake: Selecting
from Levitating Object Displays. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, Article Paper 18, 10
pages. DOI:http://dx.doi.org/10.1145/3173574.3173592

[8] T. Fushimi, A. Marzo, B. W. Drinkwater, and T. Hill.
2019. Acoustophoretic volumetric displays using a
fast-moving levitated particle. Applied Physics Letters
115 (2019), 064101.

[9] Ryuji Hirayama, Diego Martinez Plasencia, Nobuyuki
Masuda, and Sriram Subramanian. 2019. A volumetric
display for visual, tactile and audio presentation using
acoustic trapping. Nature 575, 7782 (2019), 320–323.

[10] Jinha Lee, Rehmi Post, and Hiroshi Ishii. 2011. ZeroN:
Mid-Air Tangible Interaction Enabled by Computer
Controlled Magnetic Levitation. In Proceedings of the
24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). Association for
Computing Machinery, New York, NY, USA, 327–336.
DOI:http://dx.doi.org/10.1145/2047196.2047239

[11] Mark Marshall, Thomas Carter, Jason Alexander, and
Sriram Subramanian. 2012. Ultra-Tangibles: Creating
Movable Tangible Objects on Interactive Tables. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). Association
for Computing Machinery, New York, NY, USA,
2185–2188. DOI:
http://dx.doi.org/10.1145/2207676.2208370

[12] Diego Martinez-Plasencia, Ryuji Hirayama, Roberto
Montano-Murillo, and Sriram Subramanian. 2020.
GS-PAT: High-Speed Multi-Point Sound-Fields for
Phased Arrays of Transducers. ACM SIGGRAPH (2020).
(To appear).

[13] Asier Marzo. 2016. GauntLev: A Wearable to
Manipulate Free-Floating Objects. In Proceedings of the
2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 3277–3281. DOI:
http://dx.doi.org/10.1145/2858036.2858370

[14] A. Marzo, T. Corkett, and B. W. Drinkwater. 2018.
Ultraino: An Open Phased-Array System for
Narrowband Airborne Ultrasound Transmission. IEEE
Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control 65, 1 (2018), 102–111.

[15] Asier Marzo and Bruce W Drinkwater. 2019.
Holographic acoustic tweezers. Proceedings of the
National Academy of Sciences 116, 1 (2019), 84–89.

[16] Asier Marzo, Sue Ann Seah, Bruce W Drinkwater,
Deepak Ranjan Sahoo, Benjamin Long, and Sriram
Subramanian. 2015. Holographic acoustic elements for
manipulation of levitated objects. Nature
communications 6 (2015), 8661.

[17] Asier Marzo, Sriram Subramanian, and Bruce W.
Drinkwater. 2017. LeviSpace: Augmenting the Space
above Displays with Levitated Particles. In Proceedings
of the 2017 ACM International Conference on
Interactive Surfaces and Spaces (ISS ’17). Association
for Computing Machinery, New York, NY, USA,
442–445. DOI:
http://dx.doi.org/10.1145/3132272.3132295

[18] G. Memoli, M. Caleap, Michihiro Asakawa, D. R.
Sahoo, B. Drinkwater, and Sriram Subramanian. 2017.
Metamaterial bricks and quantization of meta-surfaces.
Nature Communications 8 (2017).

[19] Rafael Morales, Asier Marzo, Sriram Subramanian, and
Diego Martínez. 2019. LeviProps: Animating Levitated
Optimized Fabric Structures Using Holographic
Acoustic Tweezers. In Proceedings of the 32nd Annual

http://dx.doi.org/10.1145/3279778.3279802
http://dx.doi.org/10.1364/OL.44.001476
http://dx.doi.org/10.1145/3279778.3279794
http://dx.doi.org/10.1145/3321335.3324939
http://dx.doi.org/10.1145/3173574.3173592
http://dx.doi.org/10.1145/2047196.2047239
http://dx.doi.org/10.1145/2207676.2208370
http://dx.doi.org/10.1145/2858036.2858370
http://dx.doi.org/10.1145/3132272.3132295

ACM Symposium on User Interface Software and
Technology (UIST ’19). Association for Computing
Machinery, New York, NY, USA, 651–661. DOI:
http://dx.doi.org/10.1145/3332165.3347882

[20] NaturalPoint. 2020a. Camera SDK. (2020).
https://optitrack.com/products/camera-sdk/ (Accessed:
02/01/2020).

[21] NaturalPoint. 2020b. OptiTrack. (2020).
https://optitrack.com/ (Accessed: 02/01/2020).

[22] Mohd Adili Norasikin, Diego Martinez, Spyros
Polychronopoulos, Gianluca Memoli, Yutaka Tokuda,
and Sriram Subramanian. 2018. SoundBender: Dynamic
Acoustic Control Behind Obstacles. In Proceedings of
the 31st Annual ACM Symposium on User Interface
Software and Technology (UIST ’18). Association for
Computing Machinery, New York, NY, USA, 247–259.
DOI:http://dx.doi.org/10.1145/3242587.3242590

[23] Yoichi Ochiai, Takayuki Hoshi, and Jun Rekimoto. 2014.
Pixie Dust: Graphics Generated by Levitated and
Animated Objects in Computational Acoustic-Potential
Field. ACM Trans. Graph. 33, 4, Article Article 85 (July
2014), 13 pages. DOI:
http://dx.doi.org/10.1145/2601097.2601118

[24] Themis Omirou, Asier Marzo, Sue Ann Seah, and
Sriram Subramanian. 2015. LeviPath: Modular Acoustic
Levitation for 3D Path Visualisations. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). Association for
Computing Machinery, New York, NY, USA, 309–312.
DOI:http://dx.doi.org/10.1145/2702123.2702333

[25] T. Omirou, A. M. Perez, S. Subramanian, and A.
Roudaut. 2016. Floating charts: Data plotting using
free-floating acoustically levitated representations. In
2016 IEEE Symposium on 3D User Interfaces (3DUI).
187–190. DOI:
http://dx.doi.org/10.1109/3DUI.2016.7460051

[26] Viktorija Paneva, Myroslav Bachynskyi, and Jörg
Müller. 2020. Levitation Simulator: Prototyping
Ultrasonic Levitation Interfaces in Virtual Reality. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–12.
DOI:http://dx.doi.org/10.1145/3313831.3376409

[27] ALGLIB Project. 2020. (2020). https://www.alglib.net/
(Accessed: 23/06/2020).

[28] Maxime Reynal, Euan Freeman, and Stephen Brewster.
2020. Avoiding Collisions When Interacting with
Levitating Particle Displays. In Extended Abstracts of
the 2020 CHI Conference on Human Factors in
Computing Systems (CHI EA ’20). Association for
Computing Machinery, New York, NY, USA, 1–7. DOI:
http://dx.doi.org/10.1145/3334480.3382965

[29] Deepak Ranjan Sahoo, Takuto Nakamura, Asier Marzo,
Themis Omirou, Michihiro Asakawa, and Sriram

Subramanian. 2016. JOLED: A Mid-Air Display Based
on Electrostatic Rotation of Levitated Janus Objects. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16).
Association for Computing Machinery, New York, NY,
USA, 437–448. DOI:
http://dx.doi.org/10.1145/2984511.2984549

[30] D. Smalley, E. Nygaard, K. Squire, J. V. Wagoner, J.
Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W.
Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson,
B. Haymore, and J. Peatross. 2018. A photophoretic-trap
volumetric display. Nature 553 (2018), 486–490.

[31] Olga Sorkine. 2009. Least-squares rigid motion using
svd. Technical notes 120, 3 (2009), 52.

[32] Carsten Steger. 1998. Evaluation of subpixel line and
edge detection precision and accuracy. International
Archives of Photogrammetry and Remote Sensing 32
(1998), 256–264.

[33] W Le Conte Stevens. 1899. A Text-Book of
Physics–Sound. (1899).

[34] Ultraleap. 2020. Ultraleap STRATOS. (2020).
https://www.ultraleap.com/product/stratos-explore/

(Accessed: 04/01/2021).

http://dx.doi.org/10.1145/3332165.3347882
https://optitrack.com/products/camera-sdk/
https://optitrack.com/
http://dx.doi.org/10.1145/3242587.3242590
http://dx.doi.org/10.1145/2601097.2601118
http://dx.doi.org/10.1145/2702123.2702333
http://dx.doi.org/10.1109/3DUI.2016.7460051
http://dx.doi.org/10.1145/3313831.3376409
https://www.alglib.net/
http://dx.doi.org/10.1145/3334480.3382965
http://dx.doi.org/10.1145/2984511.2984549
https://www.ultraleap.com/product/stratos-explore/

	Introduction
	Related work
	ArticuLev: overview and requirements
	Primitive materials
	Hardware and software
	Levitator
	Camera setup
	Software frameworks and libraries

	Developer's input
	Stage 1: Analyze
	Detecting beads and connections
	Matching detected primitives with target shapes

	Stage 2: Assemble
	Levitation paths

	Stage 3: Animate
	Single-props versus joining primitives

	Technical evaluation
	Evaluation summary

	Example combinations of primitives
	Limitations and future work
	Conclusion
	Acknowledgements
	References

