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Figure 1. In the explored use-case, a worker needs to measure exact distances between different pre-defined points on a near-symmetrical LEGO brick.
We present digital assistance for this metrology task by displaying situated step-by-step measurement guides on a tabletop-display. (a) While webcams
locate the brick, a zoomed-in camera on a pan-tilt unit rotates towards the brick to identify its unique orientation based on fine-grained features (a
LEGO logo in this case). (b) Based on the tracked unique orientation, situated guides can indicate the correct points to measure.

ABSTRACT
We present a digital assistance approach for applied metrology
on near-symmetrical objects. In manufacturing, systematically
measuring products for quality assurance is often a manual
task, where a main challenge for the workers lies in accurately
identifying positions to measure and correctly documenting
these measurements. This paper focuses on a use-case, which
involves metrology of small near-symmetrical objects, such
as LEGO bricks. We aim to support this task through situated
visual measurement guides. Aligning these guides poses a
major challenge, since fine grained details, such as embossed
logos, serve as the only feature by which to retrieve an object’s
unique orientation. We present a two-step approach, which
consists of (1) locating and orienting the object based on its
shape, and then (2) disambiguating the object’s rotational sym-
metry based on small visual features. We apply and compare
different deep learning approaches and discuss our guidance
system in the context of our use case.
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INTRODUCTION
In manufacturing, metrology is the activity of measuring ob-
jects as a part of standard Quality Assurance (QA) proce-
dures. Nowadays, even though industrial metrology tasks
are increasingly automated, many still require manual work.
While robots can support the overall procedure, e.g., by pre-
sorting the objects, many of the actual measurements are con-
ducted by workers, as was observed in real-world use cases
in companies associated with the Manufacturing Academy
of Denmark (MADE)1. The current procedure in these com-
panies involves following electronic instruction manuals that
are viewed on a desktop screen. Some measurement tools
provide the capability of digitally transmitting data, whereas
others require manual input of measurements to a computer

1Manufacturing Academy of Denmark: https://www.made.dk/

https://www.made.dk/
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Figure 2. Examples of near-symmetrical objects, including components
of fans (a), thermostats (b), pumps (c,e), plumbing (d), and a LEGO
brick (f). The shape of each object has different degrees of rotational
symmetry. Only a couple small visual features on each object allow to
determine its unique orientation.

database. Conventional systems are not aware of what instruc-
tion is being followed, hence even when the measurement
tool can send the value to the system, the worker must still
specify what measurement position the value corresponds to.
In other words, the worker must associate the schematic draw-
ing in the instruction manual to the object being measured
and determine the respective mental rotation to know which
positions to measure. In particular, near-symmetrical objects
pose challenges, since it is difficult to identify the measure-
ment points quickly and accurately with the human eye. In
this context, "near-symmetrical" means, that the overall shape
of the object has rotational symmetry. Its unique orientation
can be identified only by small visual features: either by their
locations on the object, or by determining the orientation of a
non-symmetrical feature. We have come across a multitude of
such near-symmetrical objects in industrial manufacturing (for
examples see Figure 2). Each of these has at least one visual
feature that, through careful inspection, permits identification
of the object’s unique orientation. Such features may be a
single adjustment screw on one side of a shaft, a notch or pin
that prevents wrong insertion of a component, a serial number,
etc. In the example of a 2x4 LEGO brick (Figure 2, f), the
symmetry-breaking feature is the LEGO logo (Figure 1, a).

To better facilitate metrology of such small and near-
symmetrical objects, we propose the digital guidance system
shown in Figure 1, which dynamically provides step-by-step
instructions for a given metrology task. We further propose
to provide these measurement instructions as visual guides
that are situated in close proximity to the measured object.
This aims to prevent the repeated attention-switches between
object and desktop display, which can increase the worker’s
time and energy demand [37, 17]. Furthermore, by aligning
the guides with the object’s current orientation, we strive to
reduce workers’ cognitive load, decreasing the need of mental
rotations [6, 38].

In this paper we discuss the visualization of measurement
guides situated in the task space and present a tracking tech-
nique for near-symmetrical objects that need to be measured.
Our approach supports automatic detection of small symmetry-
breaking features through computer vision and deep learning,
which allows us to identify a object’s unique orientation. We
devised a two-step tracking solution that computes the posi-
tion of the near-symmetrical object in the whole tracking area
(context), and resolves the ambiguity of its rotation (focus).
We refer to this as Focus+Context tracking, analogous to Fo-
cus+Context output [3].

We aim to support workers performing a metrology task by:

1. Providing assistance in disambiguating the object’s orien-
tation, which is challenging due to its near-symmetrical
characteristics.

2. Displaying situated measurement guides superimposed on
or in close proximity to the object, to reduce the frequency
of switching between information and workpiece tasks [23].

3. Presenting the measurement guides corresponding to the
object’s current orientation, to reduce the cognitive load of
applying mental transformations [48].

In the following sections, we elaborate on our Focus+Context
pipeline and its application to the described real-world use
case. We first present a pipeline for tracking a LEGO brick on
a horizontal display to render co-located instructions. There-
after, we present a generalized variation of the pipeline for
tracking a handheld brick and discuss the deep learning tech-
niques that both pipelines utilize. We test a number of hy-
potheses about training procedure refinements for orientation
disambiguation, through ablation studies. Finally, we discuss
the generalizability of our approach to objects with different
shapes, sizes, and visual features, and present the tracking
results for the pump component e in Figure 2 as an additional
example.

RELATED WORK
The term "Focus+Context Tracking" used in this paper, is
inspired by the work of Baudisch et al. [3], where a screen
consists of low-resolution regions providing context and high-
resolution regions for focus information. Focus+Context track-
ing can be seen as a metaphor of the same concept, applied to
input devices used for tracking, instead of output devices.

The general approach of using multiple cameras to capture
different levels of detail has already been investigated [1]. We
follow an approach similar to the one used for marker tracking
by Rekimoto et al. [34], where a fixed camera is responsible
for tracking an entire tabletop surface and a high-resolution
pan-tilt camera performs marker recognition. However, while
markers are optimized for tracking, we tackle the more chal-
lenging problem of estimating the orientation of a marker-less,
near-symmetrical object. In other words, we detect the posi-
tion and orientation of an object based on its shape and small
visual features in an image. Previous work has investigated
detecting the 2D orientation of a texture, or parts of a texture,
e.g., based on gradient vectors [4], or principal directions [16].
These techniques work for 2D rotations in image space, which



implies that their applicability is limited, when trying to detect
the orientation of a texture seen from an oblique angle. Fur-
thermore, in our case the object features a slightly reflective
material that causes view-dependent highlights in the image.

In the scenario presented in this paper, estimating a 2D rota-
tion of the visual feature in image space is not sufficient. We
therefore devised a solution with deep learning-based vision
techniques.

Computer Vision and Deep Learning
To detect and identify the object’s orientation, we apply deep
learning in our tracking pipeline. In this regard, the work of
Krizhevsky et al. [19] has led to significant breakthroughs
in image recognition using Convolutional Neural Networks
(CNNs). Since then, CNNs have proven to be highly success-
ful in other image recognition tasks, such as object detection
[32, 35], instance segmentation [11], and pose estimation
[44]. The accuracy and efficiency of CNNs have increased
substantially over the years, due in part to improvements in
the architectures of these networks [12, 39]. Furthermore,
techniques such as transfer learning [8, 31, 47] allow for im-
proved generalization when the size of the dataset is small,
and Kornblith et al. [18] found a strong correlation between
accuracy on the ImageNet dataset [19] and transfer learning
accuracy, when fine-tuning or using pre-trained networks as
feature extractors.

Augmented Workspaces
Augmented environments that seamlessly combine the virtual
and real world have been envisioned since the early 90’s, ex-
ploring how everyday environments could be augmented to
improve people’s lives and the way they work [30, 45]. Since
then, researchers have proposed systems like the DigitalDesk
[46], where the user can interact with digital information that
is superimposed on conventional paper. Augmented Surfaces
[34] follows up on the idea of projecting virtual content onto
a desk to augment a meeting room, allowing users to utilize
their environment as an extension of their laptops and attach
data to physical objects.

Even though our solution is technically not augmented reality
(AR), there are many related AR systems with similar goals
and characteristics [5, 24, 26, 33]. The effectiveness of AR
in industry has become an active topic of research over the
past few years. For example, Baird and Barfield [2] showed
that workers using AR would complete assembly tasks faster
and with fewer errors. A study on object assembly [42] pro-
vided additional evidence for this and demonstrated that AR
can also reduce cognitive load of the worker performing the
task. Henderson and Feiner [15] similarly demonstrated that
AR assistance in a procedural task can increase the workers’
performance and that co-located instructions lead to fewer
head movements. Furthermore, they found similar benefits of
using AR during maintenance tasks [14]. More recently, Uva
et al. [43] conducted a study on the effectiveness of spatial
augmented reality in manufacturing, providing evidence that
co-located technical information greatly reduces the complex-
ity of the tasks, improving completion times and lowering
error rates, when compared to paper-based instructions. Fi-
nally, Polvi et al. [27] confirmed that an AR interface can also

be beneficial in inspection tasks, resulting in lower completion
times, fewer errors, fewer gaze shifts, and a lower subjective
workload.

To our knowledge, there is no existing research on augmenting
the workplace to specifically support metrology tasks. Assem-
bly and maintenance tasks are related, in that most activities
are performed in a predictable environment and are part of a
procedural task. Furthermore, inspection tasks entail a similar
step of information matching as in metrology. However, our
use case of manual metrology poses the need for accurate pose
estimation of near-symmetrical objects, which goes beyond
related research.

USE CASE
In connection with the MADE project, we explore QA pro-
cesses at multiple manufacturing companies, where workers
manually conduct metrology on various near-symmetrical ob-
jects. In this paper, we focus on a single use-case of applied
metrology at the LEGO Group. In the presented use-case,
workers employ a range of specialized tools for measuring ob-
jects. Some of these tools are still analog and require manual
input of numbers into the database. Digital measurement tools
allow to directly transmit the measured values to the database.
However, the worker still has to indicate which measurement
step (i.e., which field in the database) the value corresponds to.
Thus, to ensure correct recording of measurements, the work-
ers currently measure certain positions, following a strict order.
This order is indicated in an electronic instruction manual (i.e.,
pdf), which includes a schematic drawing of the object with
numbered measurement positions. A computer is used to dis-
play this manual and the database with measurement entries.
Mouse and keyboard serve as input devices for navigation and
entry of measured values.

Since in this use-case most products are small and near-
symmetrical, the worker must carefully inspect each object
to correctly orient it, before being able to accurately identify
the next position at which to take a measurement. Within the
LEGO Group, we focus on a common near-symmetrical object
that undergoes rigorous QA procedures - a 2x4 LEGO brick,
which is simply referred to as brick in the remainder of this
paper.

DIGITAL ASSISTANCE: USER INTERFACE
Our digital assistant displays situated instructions for metrolo-
gists. To ensure that the workers obtain all required informa-
tion about the task at hand, the interface features an overview
panel (see white panels in Figure 3, left). This contains tex-
tual information similar to the original instruction manual,
i.e., describing the type of measurement to take and what tool
to use. Furthermore, it communicates how many measure-
ments are left in the current stage, and shows the last saved
measurement. This panel further contains a schematic 3D rep-
resentation of the object (e.g., the LEGO brick), which reflects
the orientation of the tracked object. Measurement guides on
this representation indicate which point currently needs to be
measured.

The remainder of the screen surface is reserved for displaying
co-located measurement guides when the object is placed on



Figure 3. User interface of the digital assistant. The left panel shows
textual instructions and an enlarged schematic representation of the ob-
ject, which always reflects the orientation of the actual tracked object.
Measurement guides in form of red arrows indicate the current points
to measure. Top: In the right part of the screen, the guides are shown
co-located with the physical object. Bottom: If the current instructions
cannot be co-located or the object is handheld, the left panel still shows
the instructions. In both cases, rotating the tracked object will rotate the
schematic representation on the left.

the screen. In this manner they indicate measurement positions
directly on the physical object (see Figure 3, top). Both, the co-
located guides and the oriented schematic are only displayed
when the system is certain about the actual orientation of the
tracked physical object, since it is crucial for the instructions
to always be displayed on the correct side.

Measurement guides consist of a pair of arrows. Whenever
co-location of guides is not possible, the worker can instead
refer to the guides on the schematic representation in the left
part of the GUI. This occurs either when the brick is handheld,
or when the current instructions would need to display arrows
on top of, or underneath, the object (e.g., when measuring
height). For instance, in Figure 3 (bottom), both of these con-
ditions are met. We will elaborate on this in the Handheld
mode section. In each step, only one pair of arrows is dis-
played at a time, indicating the measurement that should be
taken. When measuring with an analog caliper, the worker
can input the measured value with a keyboard, and hit Enter
to save it. When using a digital caliper that is connected to the
system, the current measurement is saved automatically upon
pressing a button on the device. The system then automatically
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Figure 4. Overview of hardware and software components. Two we-
bcams cover the entire tracking area. A zoomed-in DSLR camera pro-
vides high-resolution pictures of the tracked LEGO brick. The camera is
mounted on a pan-tilt unit, which is controlled by a Raspberry Pi. This
allows keeping the brick in focus even when it is moved. The PC controls
the overall system flow and renders instructions on a horizontal display,
so that they are co-located with the brick when it is placed on the screen.

transitions to the next step showing guides for a new point to
measure.

ARCHITECTURE
In this section, we provide an overview of the hardware and
software components of our prototype, and describe the inter-
play between these.

Overview of the tracking pipeline
An overview of our hardware and software components is pro-
vided in Figure 4. The video streams from two webcams are
used to track the location of the brick on a tabletop screen sur-
face. Furthermore, the brick’s ambiguous orientation can be
retrieved from these video streams: at this point the orientation
can only be defined up to symmetry due to the 180° symmet-
rical shape of the brick. In a second step, the DSLR camera
is oriented towards the brick’s position with the help of an
underlying pan-tilt unit. To do so, the main PC calculates the
necessary rotation and forwards these values to a Raspberry Pi
via network. This in turn controls the pan-tilt unit, to ensure
continuous tracking of the brick. The overall camera setup can
be described as a master-slave configuration [1, Ch.8.4], with
two webcams as master and the DSLR camera as slave.

The DSLR camera periodically takes pictures of the brick.
The zoom level and resolution of these pictures is sufficient to
identify small symmetry-breaking features on the brick, such
as a LEGO logo (see Figure 6). Such features allow to disam-
biguate the orientation of the brick. Once the 2D position and
unique rotation of the object are known, measurement guides
can be displayed accordingly.

The following section provides further details on the individual
steps of our tracking pipeline. Additional information on the
specific hardware and software components that we used may
be found in the System Implementation section.
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Figure 5. Our context tracking sub-pipeline is based on conventional
image processing techniques. Polarizing filters make the screen contents
appear black (top). Both video feeds are perspectively unwarped using
homographies H1 and H2 (middle). This brings both feeds into the screen
space of the horizontal display. The images are then thresholded and
combined, to create the mask of the brick in image space (bottom). The
output is the position and ambiguous orientation of the brick.

FOCUS+CONTEXT TRACKING
The idea of the pipeline shortly described above is to divide
the tracking task into two separate steps: (1) The context step
tracks the location and symmetric orientation of the brick
continuously, based on a simple and fast approach using con-
ventional computer vision techniques. (2) The focus step
disambiguates the brick’s orientation. It is triggered less fre-
quently and is based on deep learning. This section explains
each of these steps in detail.

Context tracking
To locate the brick, two context cameras stream their video
feeds to the main PC (see Figure 5, top). We attached polariza-
tion filters to the cameras, so that all content on the tabletop
screen appears black in the video feeds [29]. This way, co-
located instructions will not interfere with the tracking. By
applying (pre-calibrated) homographies to each stream, both
video feeds are warped into screen space (see Figure 5, mid-
dle). The brick can then be segmented in each feed simply by
binary thresholding. These thresholded images are combined
with an AND-operation on each pixel. The resulting binary
image is then searched for a mask that has 4 corners and a (ro-
tated) rectangular shape, to exclude other potential objects on
the screen. The center of this mask corresponds to the brick’s
position, and its rotation can be identified by averaging the
angles of its two long edges. However, as mentioned before,
the rotation is still ambiguous at this point, since the brick

Figure 6. Raw pictures from the zoomed-in DSLR camera. For better
print quality, we adjusted the aperture and increased the exposure time
compared to the values we use at run-time. Furthermore, we cropped
the resulting images. The left and right picture lead to the same orien-
tation in the context tracking step. However, the upright LEGO logo
on the left and the upside-down logo on the right allow disambiguation
between both possible orientations in the focus step.

yields identical thresholded images when it is rotated by 180°
(see "Context" image in Figure 7). Overall, this approach for
context tracking requires very little computational power and
can therefore output the position and orientation of the brick
in real-time.

Focus tracking
Once the position of the brick is known, the pan-tilt unit can
orient the DSLR camera towards it. This camera takes a pic-
ture every 2 seconds and transmits it to the main PC. Figure 6
shows two examples of raw images provided by the camera,
of a 2x4 brick that is rotated by 180°. As with the context
cameras, a polarization filter makes the screen beneath the
brick appear black. The raw image is then passed to a Mask R-
CNN [11] instance segmentation model. In contrast to simpler
techniques such as chroma keying, this approach allows the
system to effectively detect the brick even when other objects
are in the picture, or when the object is partially occluded.

After performing instance segmentation, the picture is cropped
and the values of all pixels outside the segmented mask are
set to 0. The cropped picture is then fed into an additional
CNN to disambiguate the object’s orientation. This problem
was solved using a 50-layer residual network architecture [12].
As shown in the "Focus" illustration in Figure 7, the classifier



Figure 7. Combination of Focus+Context to retrieve the unique orien-
tation of the brick. The output of the context pipeline is an ambiguous
orientation: in the "Context" image the orientations marked by blue
and orange arrows lead to equivalent results. The output of our focus
classifier is one of four directions ("Focus" image). We then choose the
direction from the context output that has a positive dot product with
the focus output. In the illustrated example, the brick’s orientation cor-
responds to the blue vector in the "Result" image.

returns one of 4 different classes, depending on the orientation
of the LEGO logo: up, down, left, and right.

Combining focus and context
In the final step of our tracking pipeline, the outputs of focus
and context are combined. While the position of the brick can
be retrieved directly from the context tracking step, the orien-
tation results from a combination of both sub-pipelines, as is
illustrated in Figure 7. The output of the context tracking con-
sists of two vectors, indicating two possible orientations (the
blue and orange arrows in the "Context" image of Figure 7).
The output of the focus tracking is one vector, indicating one
of four main directions (see Figure 7, "Focus" image). We
then form the dot product of each vector from context tracking
and the single vector resulting from focus tracking, and we
choose the context vector that results in a positive dot prod-
uct (blue arrow in the "Result", Figure 7). Even in the rare
case when the output of the context tracking is in between
classes (e.g., exactly between pointing up-right and down-left)
and the focus tracking is undecided between two classes, the
end-result from the dot product will still be valid. We will
elaborate on this in the Discussion and future work section.

The resulting direction vector is used to calculate the unique
orientation of the brick, to properly align the measurement
guides.

HANDHELD MODE
In the previous sections, we described an easy-to-replicate
setup, which utilizes the polarized light from a horizontal dis-

Figure 8. Top: Alternative context tracking pipeline. When tracking
the object based on image segmentation within each of the two webcam
streams (left and right), the 3D position of the object can be estimated
with the intrinsic and extrinsic parameters of the two webcams. Bottom:
Alternative display setup. The system can alternatively be used with
a vertical screen, or both a vertical and a horizontal screen simultane-
ously. In each arrangement, the displayed guides are always presented
in accordance with the object’s current orientation.

play to segment the object from the background. This makes
the context pipeline simple and computationally fast. How-
ever, an obvious limitation of this approach is that the object
must always be placed on top of the display, in order to receive
situated instructions. Furthermore, in a preliminary interview,
workers were concerned that continuously gazing down at the
tabletop throughout an entire work session might cause neck
strain. With this limitation and the workers’ concerns in mind,
we created a variation of the pipeline that allows the object
to be handheld and instructions to be displayed on a separate
vertical screen.

To achieve this, we generalized the context tracking step of the
pipeline, by basing it on the Mask R-CNN instance segmenta-
tion model, instead of simple binary thresholding. This makes
it possible to correctly detect the object in more challenging
scenarios, e.g., when it is partially occluded due to being held
by the worker, or being partly encompassed by a measuring
tool. The same model, which we use for segmenting the object
in the DSLR camera image, can directly be applied in real-
time to the footage of the two webcams.

Figure 8 (top) shows tracking of a handheld object by combin-



ing the segmentation results from both webcams. Based on the
camera positions, intrinsic parameters, and bounding boxes
in each camera stream, we can estimate the position of the
object. For each webcam, we create a ray from the camera’s
position through the center of the detected bounding box in
the image plane. This creates skewed 3D rays, i.e., they are
neither parallel, nor do they intersect, since the centers of the
bounding boxes are rarely located at the exact same points on
the brick. Based on the line equations, we then find the point
with minimal distance to both rays. This gives us the object’s
position, which is forwarded to the pan-tilt unit controller for
orientation of the DSLR camera.

The next step is to identify the ambiguous orientation of the
object. In the image of the the zoomed-in DSLR camera, we
approximate a polygon around the segmented object in image
space and take the longest edge as orientation indicator. We
then calculate the orientation in world space by making two
assumptions: (1) Due to the fact that the DSLR camera is
zooming in on the small object, we can assume an almost
orthographic projection of the object in the segmentation. (2)
With our chosen set of instruction steps, the orientation will
vary only around the y-axis (up-axis). Based on these assump-
tions, we can simply transform the direction of the longest
edge into world space, using the known extrinsic parameters
of the DSLR camera. Finally, we resolve the near-symmetry
as in the previously presented pipeline.

With this approach, the non-co-located instructions for a hand-
held brick can be presented in correct orientation correspond-
ing to that of the tracked object. This is illustrated in Figure 3
(bottom) and Figure 8 (bottom). Workers can switch between
these modes as desired: they can trigger co-located guides by
placing the brick on the horizontal screen, or they can look at
the vertical screen to reduce neck strain.

SYSTEM IMPLEMENTATION
This section provides details about the frameworks, engines,
and hardware that our particular implementation of the archi-
tecture is based on. While the pipeline is not bound to the spe-
cific set of software and hardware components described here,
these choices were useful for an effective proof-of-concept
setup.

The overall pipeline and the rendering is implemented in Unity
3D. The measurement guides are displayed on a 15.6” portable
screen, which can be used as a horizontal tabletop display, or
positioned vertically. The worker can input and save mea-
surements in the system through a digital measuring device,
such as the Mitutoyo micrometer (series 406), or a traditional
keyboard. Pressing a button on the digital measuring device
emulates keyboard inputs with the digits of the measurements
followed by Enter. Alternatively, a foot pedal could be used to
perform this button press.

We use the Velt Framework [10] to handle the data flow of the
system and the communication between its various compo-
nents. This node-based framework is a Unity 3D plugin and
simplifies the creation and inspection of data flow pipelines,
including pre-processing, network communication, etc. The
context tracking is implemented as a specialized Velt exten-

sion, but also based on built-in nodes, e.g., nodes that wrap
OpenCV functionalities.

We use a Raspberry Pi Model 3 B for receiving HTTP re-
quests and for interfacing with a Maxwell MPR-202 pan-tilt
unit. This serves to correctly orient the attached focus camera,
which is a Sony RX10 II DSLR camera. To trigger rotations of
the DSLR camera, the Raspberry Pi controls relays, opening
and closing circuits on the pan-tilt unit’s DIN7 socket. Since
the pan-tilt unit only supports relative movements and does
not have a built-in sensor to provide its pan and tilt values, we
attached an accelerometer (MPU-9160) to calculate its current
orientation. Thus, when an absolute desired orientation is
forwarded to the Raspberry Pi (based on the tracked object’s
position relative to the pan-tilt unit), it rotates the pan-tilt unit
until the requested orientation is reached, so that the DSLR
camera is oriented towards the tracked object. We take the
high-resolution pictures with an ISO value of 640, an exposure
time of 0.1 seconds, and an f-number of 3.2. These values
only serve as an orientation, as the robustness of the pipeline
does not heavily depend on the camera settings, as long as the
symmetry-breaking features (e.g., LEGO logo) are visible in
the picture. We then use the Sony Imaging Edge Remote tool
[40] to automatically take pictures and periodically transmit
them to our system via USB. Another specialized Velt node
receives these pictures and triggers the focus part of our track-
ing pipeline.

All deep learning components are implemented in Python and
the central pipeline communicates with these via HTTP. We
use the PyTorch framework [28] to implement and train our
models and we follow a training procedure inspired by He et
al. [13]. All evaluations of our system were conducted on
machines with two Nvidia RTX2080ti graphics cards.

TECHNICAL EVALUATION
In this section, we evaluate the accuracy of our deep learning
models. To train our models we gathered two different datasets,
which are described in the following subsections.

Instance Segmentation Model
We start by describing the training procedure for the Mask
R-CNN model that was used for instance segmentation. For
this problem we used a training dataset with 90 pictures and
a validation dataset with 20 pictures, which were annotated
using the VIA annotation tool [9]. Our Mask R-CNN model
uses a Feature Pyramid Network [20] backbone architecture
based on a 50-layer residual network [12]. We used a model
that was pre-trained on the COCO dataset [21]. This model
was trained over 50 epochs using stochastic gradient descent
with momentum, at an initial learning rate of 0.005 divided
by 10 every 13 epochs, a weight decay of 0.0005, and a batch
size of 2. After training, our Mask R-CNN detector achieves
a segmentation mAP of 88% and a mask mAP of 87% on the
validation dataset, which is robust enough for our segmentation
needs.

Orientation Model
The orientation model is responsible for disambiguating the
orientation of the tracked object. For the orientation problem
in our specific use case we had a training dataset with 400



Classification Regression

D=50 (120e) D=100 (60e) D=200 (30e) D=400 (15e) D=50 (120e) D=100 (60e) D=200 (30e) D=400 (15e)

Baseline 0.45±0.02 0.46±0.03 0.45±0.03 0.46±0.03 0.35±0.04 0.31±0.02 0.31±0.04 0.29±0.01

+ Transfer learning 0.82±0.06 0.96±0.02 0.95±0.02 0.96±0.01 0.66±0.10 0.85±0.06 0.85±0.04 0.82±0.05

+ Rotation 0.91±0.04 0.98±0.01 0.97±0.01 0.97±0.01 0.79±0.03 0.86±0.06 0.90±0.03 0.85±0.05

Table 1. Evaluation results. D stands for size of the dataset, followed by the number of epochs. Each experiment was executed 5 times and we report
the average accuracy. The best results were obtained when using a classifier and a training procedure using transfer learning and rotation as part of
the augmentation techniques. Higher accuracies were obtained when the dataset had at least 100 samples.

images and a validation dataset with 192 images. Each image
had the ground truth of the 2D pose of the brick. In this
section we will test the following three hypotheses related to
this model:

(H1) With a small dataset, using transfer learning improves
accuracy.

Models pre-trained on ImageNet [7] tend to lead to
improved performance for diverse image classification
tasks [8, 31]. However, recent research [18] has demon-
strated that, for some small fine-grained image classi-
fication datasets, the benefits of transfer learning are
minimal.

(H2) Augmenting data with random rotations leads to higher
accuracy.

Rotation in image space is an augmentation technique
that has been used successfully in previous work [25].
We expect that such an augmentation is particularly ben-
eficial when training a model that predicts the orientation
of an object.

(H3) Solving our problem using a regression loss function
leads to better performance compared to a classification
loss function.

Since the goal of regression is to predict the exact orienta-
tion of the object, we expect it to be more accurate when
comparing to solving the problem for classification.

Considering that classification alone would not be sufficient to
get the orientation of circular objects, we solved the problem
using regression to estimate the 2D rotation unit vector of the
object. To test H3, we compared the accuracy of regression
models to classification models by assigning a class from the
rotation vector estimated through regression. This can be ob-
tained by normalizing the output vector and assigning it to its
corresponding class.

We performed various experiments to test our hypotheses (see
Table 1). We tried different sizes of training datasets, since it
is not only relevant to know how large the dataset has to be in
order to solve the orientation problem, but also to explore the
efficiency of the different refinements in the training procedure
when the size of the dataset varies. We used stochastic gradient
descent with momentum to train the orientation models and
used a ResNet-50 architecture [12] in all the experiments, due
to its simplicity and accuracy on the ImageNet dataset. For
transfer learning, we used weights pre-trained on the ImageNet
dataset [7]. The number of epochs was adjusted according to

the size of the dataset.

Each experiment was executed 5 times, and we report the
average accuracies in Table 1. In preliminary experiments
we obtained the best results with a learning rate of 0.001, a
batch size of 8, and a weight decay of 0.00004. Therefore, we
used these hyperparameters for all further experiments. We
did not decay the learning rate for the experiments in Table 1,
since for the bigger dataset sizes the number of epochs is low.
When solving our problem using regression, we used the mean
squared error loss function. For the classification problem we
used cross entropy loss. In all experiments, after cropping
the image to the bounding box from our detector, we cropped
the pictures with an aspect ratio randomly sampled in [ 3

4 ,
4
3 ]

and an area distributed between 8% and 100%, finally resizing
them to the input size of the network (224x224). This method
has been used successfully in previous work [13, 41] and also
worked well for the brick. However, this may be facilitated by
the fact that the symmetry-breaking LEGO logo is present on
most of the brick’s surface. For objects where fine details are
important it might be necessary to keep the image aspect ratio
unchanged and add padding to the image, or make changes to
the CNN architecture to support a larger input size.

To test H1 and H2, we conducted a baseline training experi-
ment where we did not use transfer learning. We added each of
the refinements incrementally, hence in the Transfer learning
row of experiments in Table 1 we used a pre-trained model,
and in the Rotation row we added rotation as a data augmenta-
tion technique. For the latter, we randomly rotated the image
by an angle between [−30◦,30◦] and adjusted the ground truth
accordingly. Intrigued by the lower accuracy obtained when
solving the problem with a regression loss function, we de-
cided to run additional experiments for longer with the larger
training dataset (90 epochs). The learning rate was adjusted to
0.002, but decayed at a rate of 0.1 every 30 epochs. Results
thereof are shown in Figure 9.

Discussion of results
The results in Table 1 are in line with H1 and H2. For this
use case, transfer learning always resulted in substantial im-
provements in accuracy. Using rotation as an augmentation
technique also resulted in better accuracy, in particular in cases
when the dataset was small. These results provide evidence
that it is possible to perform the rotation disambiguation with
a very small dataset. Contrary to H3, our results indicate that
classification always performed better than regression in this
particular task. The graph of accuracies shown in Figure 9 also
suggests that when solving the problem using a classifier, the



Figure 9. Accuracy comparison between a model using classification
and a model using regression, trained with the complete training dataset
containing 400 pictures.

model was able to learn faster than with regression. However,
these findings are closely related to the choice of architecture,
loss function and training procedures. Hence, further research
is needed to understand why approaching the problem from a
classification perspective results in better performance.

Other materials and shapes
In this paper we apply well established deep learning algo-
rithms that have been used successfully to accomplish different
visual recognition tasks [11, 12, 20] in a variety of complex
datasets [7, 21]. Therefore, we speculate that our approach is
generalizable for most near-symmetrical objects that require
such QA procedures in industry. To support this argument, we
further tested the orientation model with the pump component
depicted in Figure 2 (e). This component has 4 degrees of
symmetry and is composed of black plastic and metal. The
zoomed in image in Figure 10 shows its symmetry-breaking
features, which consist of several holes of different shapes and
sizes, as well as a bright vertical element. The experiment was
conducted using a training dataset with 100 images, trained
over 60 epochs, with the same hyper-parameters as described
in Table 1. We used 8 classes, spanning 45° each. The re-
sults of this experiment, given in Table 2, show similarly high
accuracies as earlier experiments with the brick (see Table 1,
column with classification, D=100, 60e). While these results
support that our method is generalizable, further research is
necessary to confirm this assumption.

Classification (D=100, 60e)

Baseline 0.91±0.05

+ Transfer learning 0.95±0.02

+ Rotation 1.00±0.00
Table 2. Results of experiments using object e from Figure 2. D stands
for size of the dataset, followed by the number of epochs. Each experi-
ment was executed 5 times and we report the average accuracy.

Figure 10. Near-symmetrical pump component made of black metal
and plastic. It measures 8.5x8.5cm. The zoomed in image on the right is
enhanced to highlight the symmetry-breaking features of the component
(outlined in blue).

DISCUSSION AND FUTURE WORK
Our system is inspired by metrology practices in QA at several
manufacturing companies associated with the MADE project.
While such practices involve various types of objects and
different measurement tools, we focus merely on a subset
of a metrologist’s task space. We hope that in the future
the concepts presented in this paper can be applied to more
varied measurement activities. In this section, we reflect on
essential parts of our pipeline, discuss limitations and give
considerations for future work.

Degrees of symmetry
In the presented work, we primarly focused on 180°-
symmetric objects (e.g., a 2x4 LEGO brick). This means
that after context tracking, there are two possible rotations to
choose from (see "Context" in Figure 7). We then use four
classes at 90° to each other (i.e., up, down, left, right), to re-
solve uncertainties, as is shown in Figure 7 ("Focus"). Even if
the orientation is close to the boundaries between two classes
and the classifier is undecided, the end-result remains valid.
For instance, if the detected direction is exactly between "up"
and "left", it does not matter whether the classifier outputs
"up" or "left", since in both cases the resulting vector based
on the dot product will be the same. We can therefore argue
that for a 180° symmetrical object, the minimum number of
classes for resolving ambiguities orientation is three, i.e., each
spanning 120°. In our example we use four classes, to increase
the stability and yield a more intuitive set of directions for out-
put and training.

From this we can go on to surmise more generally, that the
minimum number of classes to disambiguate orientation is
the degree of rotational symmetry plus one (i.e., with 180°
symmetry, a resulting vector can stem from exactly 2 different
orientations, ergo 2+1 = 3 classes). These classes must be
evenly distributed around a full circle (360°). For instance, a
90°-symmetric object, such as a the pump component in Fig-
ure 2 (e), would require a minimum of five classes, spanning
72° each. This approach is limited regarding round shapes,
like discs, since these have no discrete set of rotations to dis-
ambiguate from. For instance, for a round object with a small



non-symmetric logo in the middle the context tracking pipeline
in our setup could merely provide the object’s location for the
focus camera to orient towards, but all orientation information
would need to be provided by focus tracking. This can be
achieved with the orientation model that estimates the exact
rotation, as was discussed in the Technical Evaluation section.

Limitations and alternatives
There is room for improvement in several parts of the Fo-
cus+Context tracking pipeline. Our current scope covers mea-
surement steps when the object is oriented so that the symme-
try breaking feature faces up towards the cameras. With small
adjustments to the setup, the same principles may be used
to cover further cases (e.g., a side-ways brick) and support a
larger variety of measurement steps. In more general terms,
in the future we intend to integrate our orientation model in
the Mask R-CNN framework to explore real-time 3D pose
estimation using deep learning. Other promising approaches
could involve continuously tracking the object using infor-
mation from the previous known pose, or designing a deep
learning framework that uses the input of both context and
focus cameras to improve accuracy. This could also help cope
with the issue of occlusion, which persists in particular when
measuring small objects. As of now, the object has to be visi-
ble to the focus camera so the system can provide instructions
with the correct orientation. However, in these situations, the
instruction could still be visualized in an initial default pose
or the last known one.

Currently, although the deep learning algorithms run in real
time, the system has some latency caused by the pan-tilt unit
and DSLR camera. Rotating the unit and taking a picture takes
some seconds before it is received by the main PC. One way to
circumvent this practical limitation would be to use multiple
focus cameras. A faster pan-tilt unit, or industrial cameras
with zoom lenses and high resolution video streams would
also reduce the system’s latency.

Alternative solutions could also be explored in regards to the
display technology. In our system, we currently use LCD
screens to prevent worker instrumentation. However, projec-
tors and head-mounted displays could allow co-location of
measurement guides even in a hand-held tracking scenario.
We aim to explore further display options and their trade-offs
in the future.

Future long-term evaluation with experts
To assess the practical value of our proposed solution for digi-
tal assistance in applied metrology, a long-term evaluation of
our system at manufacturing companies is required. Arguably
our guidance system can lead to performance advantages in
QA. In an unaided scenario, workers currently need to closely
inspect an object to identify and adjust its orientation manually,
before referring to the measurement instructions, and must
then manually enter the values in the correct field. Our algo-
rithm detects the object’s orientation for them and presents
the measurement guides accordingly, which removes the need
for close scrutiny and mental rotations. Furthermore, our pro-
posed approach entails that both the guides and the object are
always visible in the worker’s field of view, which reduces
task complexity [36]. While a field study is beyond the scope

of this paper, it would allow us to explore the efficacy of our
approach, identify further limitations, and help us to better
address the workers’ needs. The results of such a study would
also lead to further development of our system. For example,
this could involve a step for verification of measurements - i.e.,
tracking the worker and the measurement tool to verify what
position is measured, to ensure that it is measured correctly
and allow automatic recording of values. By providing the
technical details involved in tracking objects for digital assis-
tance during applied metrology, this paper forms the ground
work for further development and evaluation during deploy-
ment in the field.

Applications beyond metrology
The presented approach is aimed at industrial metrology tasks
that are executed in a conventional work space (consisting
of a desk, chair, measurement tools and a computer). This
arguably makes our solution easily transferable to similar ac-
tivities beyond metrology, e.g., in a play context. For instance,
Miller et al. [22] track the building process of a colored brick
construction to create a virtual replication thereof. This could
be extended through our concept, by additionally tracking
the unique orientation of each new brick whenever the user
attaches it to the construction. This would add degrees of
freedom to the building process without requiring specialized
bricks: the orientation of a brick could alter the local appear-
ance of a virtual texture that spans across the construction,
or it could be used to define the inside and the outside of the
construction.

CONCLUSION
In this paper, we present the basic concepts for providing
digital assistance for metrology during quality assurance in
manufacturing. In particular, we propose a two-step approach
for pose estimation of near-symmetrical objects, which we
call Focus+Context tracking. By combining (1) coarse-grained
object recognition with context cameras and (2) precise pose
estimation based on fine-grained features with a focus cam-
era, we leverage (1) fast computer vision techniques and (2)
accurate deep learning strategies. We describe the tracking
pipeline we implemented and elaborate on how this was ap-
plied to a typical metrology scenario, using a 2x4 LEGO brick
as an example use case. The results show that the fine-grained
features on a brick are sufficient to successfully estimate its
pose, including its unique orientation, with very high accuracy.
We further apply our framework to the example of tracking
a pump component and argue that the presented concept for
pose-estimation can be extended to a wider range of applica-
tions with near-symmetric objects, or more generally, nearly
identical objects with small distinguishing features.
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