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ABSTRACT
We present Inpher, a virtual reality system for setting physical
properties of virtual objects using mid-air interaction. Users
simply grasp virtual objects and mimic their desired phys-
ical movement. The physical properties required to fulfill
that movement will then be inferred directly from that mo-
tion. We provide a 3D user interface that does not require
users to have an abstract model of physical properties. Our
approach leverages users’ real world experiences with physics.
We conducted a bodystorming to investigate users’ mental
model of physics. Based on our iterative design process, we
implemented techniques for inferring mass, bounciness and
friction. We conducted a case study with 15 participants with
varying levels of physics education. The results indicate that
users are capable of demonstrating the required interactions
and achieve satisfying results.
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INTRODUCTION
Real-time physics engines create plausible motion of virtual
objects without the need for predefined animations. This al-
lows for flexible interactive virtual environments. Developers
of these interactive environments typically input physical prop-
erties based on well established physical models. However,
this requires a certain level of knowledge about these models
to input meaningful numbers and to have an intuition about the
effects of adjusting these. Therefore, setting physical proper-
ties, as well as other aspects of designing a virtual environment,
is typically a demanding process during development. Many
content creation tools have been developed for users with no
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Figure 1. Inpher makes it possible to define physical properties like
bounciness of virtual objects through mimicking their physical behav-
ior. (a) The user is equipped with virtual reality goggles and controllers
for 3D input. (b) Users can grasp virtual objects and describe a physi-
cal motion to define the object’s physical behavior (top). The free-flight
physical motion of the object resembles the user’s input curve (bottom).

actual content creation background. These simple, but pow-
erful tools aim at the easy creation of virtual 3D worlds [20],
models [19], and animations [9] to enable creativity of users
without requiring domain-knowledge. However, in all of these
tools, editing physical behavior of virtual objects is typically
not addressed and is instead based on predefined sets of phys-
ical properties. Users have very little control over physical
behavior, which limits the expressiveness of these tools.

We present Inpher, a virtual reality system for setting physi-
cal properties using mid-air interaction. Equipped with VR
goggles (e.g., HTC Vive [10]), users are situated in a virtual
environment. Virtual objects react physically to interactions
with each other and the user. To define their physical behavior,
virtual objects can be grasped and trained, i.e., the user mimics
a physical motion to indicate, how it is supposed to behave
when colliding, bouncing etc. After training, the system infers
the physical properties of the object like bounciness, mass
and friction so that its physical behavior resembles the user’s
intention as closely as possible. Figure 1 shows an example
for inferring bounciness. We contribute (1) An approach for
setting physical properties of dynamic virtual objects using
mid-air interaction, (2) a proof-of-concept system that infers
bounciness, mass and friction of virtual objects, and (3) a case
study that shows that users with little to no knowledge about
physics were able to set desired physical properties.

RELATED WORK
Much of our work is based on classical mechanics, which
can be found in physics literature (e.g. [2]). The idea of
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inferring physical properties from motion of real objects is
well explored [6, 3, 13, 21]. These approaches use video
and motion capture data of real objects as input to accurately
determine their mechanical properties.

We focus our attention on the challenges emerging from perfor-
mance based 3D user input. Instead of capturing objects, users
perform the physical motion to express their intention and the
properties of objects that are not physically available or even
realistic. This allows for flexibility and expression, but it also
implies that the input is limited by human capabilities and is
generally not physically accurate. Further challenges are the
design of appropriate interaction techniques to express these
motions. To the best of our knowledge, there is no system
with the same overall objectives as ours. However, closely
related systems focus on the inference of physical properties
for animation. The system of Popović et al. [18] lets ani-
mators define various positions and orientations of a virtual
object for specific points in time. The system then infers
the physical properties necessary to meet the constraints in a
physically plausible motion. Another system of Popović et al.
[17] enables users to sketch a motion through mid-air inter-
action or by moving a physical prop. The system transforms
the sketched trajectories into physically plausible movements.
Laszlo et al. [12] present a system that creates physically plau-
sible 2D animations based on mouse movements. All of these
animation systems infer properties for particular motions or
sub-movements, whereas we aim at inferring persistent physi-
cal properties. Further related approaches can be found in the
field of human-robot interaction in particular in learning by
demonstration techniques. These techniques and our approach
share the common goal to let non-domain-experts demonstrate
desired behavior. (see Argall et al. [4] for an overview). Ex-
amples of these techniques include demonstration by moving
the robot’s joints directly [7] or by using user-attached sensors
or markers [11, 16].

We contribute to the literature by proposing an approach to
enable novice users to interactively define physical properties
of virtual objects.

DESIGN PROCESS
The core idea is inspired by the bodily expression of mechan-
ical properties based on intuition and experience, instead of
abstraction and knowledge about mechanics. For instance,
a kid playing with action figures mimics the movement of a
heavy imaginary character by making the figurine move slowly
with impactful steps. In contrast, the kid moves a figurine of a
lightweight character with a fast acceleration. The kid has no
knowledge about physical abstractions, but implicitly commu-
nicates the intended mass of the characters, independently of
their actual mass of the figurines.

We started by investigating the mental model of users regard-
ing physical behavior of objects. To do so, we invited 9 par-
ticipants (1 female) with ages ranging from 24 to 37 to a
bodystorm [15]. We provided several physical props, like
balls, ropes etc. to participants. Participants were asked to
express different physical properties by grasping and moving
the props, letting them collide etc. There was a wide range

a) Bounciness                                 b) Relative mass                                c) Friction

Figure 2. Supported physical properties of our proof-of-concept system.
Users train virtual objects (blue) by grasping and moving them. The
respective property value is calculated based on certain characteristics
of the (red) trajectories describing the demonstrated motion of users.
Bounciness (a) is a repeating down-and-up motion. Relative mass (b) is
the the collision of two objects. Friction (c) is a sliding-down movement
on an inclined surface.

of approaches and potential interaction techniques, which in-
fluenced our prototype system and inspired future work as
discussed later.

SYSTEM
We implemented a proof-of-concept system, which supports
a selection of physical properties, namely bounciness, mass
and dynamic friction. Figure 2 provides an overview. The
core idea is not limited to these three properties. They are an
initial exploration of the design space that our approach de-
fines. Users can freely move within a virtual environment (see
Figure 6) and grab virtual objects to train them. In our current
implementation, we provide stations in the environment to
train specific physical properties.

Bounciness
Depending on the bounciness ε ∈ [0,1] of the object, its motion
gets slowed down after hitting a surface and getting reflected.
To train the bounciness, users mimic a free fall parabolic
motion until it hits the surface followed by a bounce and
another parabolic motion. In the following, we describe the
calculation of the coefficient of restitution (bounciness) for one
bounce. Optionally, users can mimic multiple bounces, which
yields an averaged coefficient of restitution. The coefficient of
restitution for one bounce is defined as follows:

ε =
−~n ·~v+

~n ·~v−
(1)

where ~n is the surface normal. ~v− and ~v+ are the relative
velocities before and after impact.

Instead of measuring the ingoing and outgoing velocity di-
rectly, we derive them from the maxima of the trajectory when
bouncing on a horizontal surface (i.e.,~n = (0,1,0)). This ac-
counts for the fact, that users generally do not describe an
accurate parabolic motion with correct timing, but instead
think in terms of how high the object bounces. We compare
the highest point of the trajectory with respect to the surface
before and after the object hits the surface. Figure 3 depicts
the vectors involved in the calculation for bounciness. The
point p in Figure 3 is the point of impact, p− is the highest
point before impact and p+ is the highest point after impact.
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Figure 3. A bouncing motion. The trajectory depicts the x-y-positions of
a bouncing object over a time period. We identify the highest points with
respect to the surface before and after collision to calculate the bounci-
ness coefficient.

We use the following equations for velocity v and position y
with earth’s gravity g over time from classical mechanics:

v = g · t, y =
g
2
· t2

In our case, y is the vertical position of the object. Inserting
the formula for y into v yields:

v = g ·

√
2 · y
g

=
√

2 · y ·g (2)

The y-components of p−, p+ and p give us two maximum
heights.

y−max = p−y − py, y+max = p+y − py

Inserting them into Equation 2 gives us the ingoing and outgo-
ing velocity during impact, respectively. Inserting everything
into Equation 1 gives us the formula for bounciness:

ε =

√
2 · y+max ·g√
2 · y−max ·g

=

√
y+max

y−max

The highest points of the parabolas are calculated by locally
searching for points on the trajectory where the velocity is
orthogonal to the surface normal.

Relative mass
To train the mass of an object, users demonstrate the behavior
by letting it collide with another object. Figure 2 (b) shows
trajectories of two colliding spheres. Depending on how the
user changes the velocities of these spheres after collision,
their relative mass can be calculated. We assume a non-elastic
collision and utilize the law of conservation of momentum:

MA · v−A +MB · v−B = MA · v+A +MB · v+B
Where v−A and v+A are the velocities of the trained object before
and after impact. Same for v−B and v+B of the other object. MA
is the mass of the object to be trained. MB is the mass of the
other object. Solving for MA yields:

MA =
MB · v+B −MB · v−B

v−A − v+A
MA can then be used to determine the mass of a third object
and so forth. The mass values are unitless and only describe
relative masses of objects. The virtual environment is a closed
system and therefore objects generally interact correctly as

long as users are consistent when demonstrating mass between
objects. However, if two objects have not been trained to one
another, a default relative mass is assumed, i.e., MB = 1.

Friction
Moving objects that slide along a surface are slowed down
depending on the dynamic friction. Instead of letting users
demonstrate how the objects slow down, we implemented an
opposite approach. An object which is sliding down an in-
clined surface is accelerating. The acceleration depends on the
friction and can therefore be used as an indicator for how high
the friction is. Users demonstrate the dynamic friction by ac-
celerating an object on an inclined surface (see Figure 5). We
base our approach on the Coulomb model of friction. Figure 4
depicts the involved vectors. v is the velocity of the object.
m ·g is the gravitational force pulling the object straight down
according to the object’s mass. θ is the angle of the inclined
surface. We denote the dynamic friction as F . It annihilates
the gravitational force depending on the inclination.

||F ||= µd ·m ·g · cos(θ) (3)

Where µd is the dynamic friction coefficient we are interested
in. We further define the magnitude of the force that makes
the object slide down along the surface.

||Fs||= m ·g · sin(θ) (4)

The resulting force is then:

FR = Fs +F

Furthermore, FR contains the resulting acceleration.

||FR||= m ·a (5)

Note that Fs and F are opposed to each other, hence:

||FR||= ||Fs||− ||F || (6)

By inserting equations 3, 4 and 5 into Equation 6, we can solve
for the dynamic friction coefficient:

m ·a = m ·g · sin(θ)−µd ·m ·g · cos(θ)

µd =
g · sin(θ)−a

g · cos(θ)

Users demonstrate how the object constantly accelerates while
sliding down the surface. The averaged acceleration of the
user’s movement gives us a in the equation above.

Figure 4. An object sliding down an inclined surface with surface nor-
mal N is slowed down by dynamic friction.



Figure 5. The station for dynamic friction. Users adjust the angle of
an inclined surface using the white steering wheel. They can then train
dynamic friction by letting a trainable object slide down the surface.

IMPLEMENTATION
Our prototype is implemented in Unity 5 [1] and is running
on an ordinary gaming PC that meets VR requirements. The
built-in real-time physics engine of Unity (PhysX [14]) allows
us to simulate the calculated properties. We use HTC Vive
and SteamVR for our immersive setup. While not being a
strict requirement for our approach, we chose to utilize the
advantages of VR like leveraging the user’s proprioception
and using existing 3D interaction techniques. We utilize the
Interaction System accompanying SteamVR. The HTC Vive
controllers allow for accurate bimanual 3D trajectory input.
Furthermore, they provide physical buttons, which we used
to assign functionalities like grasp, start training etc. In order
to enable users to navigate in the large virtual environment,
we use the built-in Vive teleportation system, which is similar
to [8]. Lastly, we have used 3D models from Low Poly: Free
Pack [5].

CASE STUDY
We conducted a case study to investigate the feasibility of our
approach and to gather qualitative feedback on the core idea
and the proof-of-concept system with the three implemented

Figure 6. Overview of our virtual environment. Virtual objects to train
can be obtained from the spawn area. Bounciness, mass and friction can
be trained at their respective stations. The playground can be used to
test the physical interactions of trained objects.

properties. We invited 15 participants (6 female) with ages
ranging from 21 to 55 (mean = 27). Figure 6 shows the virtual
environment of our case study. The three stations were intro-
duced one-by-one and participants tried out the functionalities.
After the introduction, participants experimented freely and
defined properties while expressing their thoughts in a think-
aloud protocol. Participants could use the playground to test
their defined properties. For instance, they could first train the
dynamic friction and mass of an object, go to the playground
and try to hit pins by letting it slide over a curved bridge (see
Figure 6 bottom). An undo functionality allowed for undoing
unintended motions. However, the experimenter was mostly
in charge of recovering from errors. A session took around 40
minutes.

Results and discussion
We observed that every user got used to the system’s capabili-
ties eventually, many of them fairly quickly, even if they did
not have much experience in VR. One user commented the
following about the overall idea:

"The fact that you do it virtual-physical is significantly
easier and if I should just set a number between 0 and 1,
I would have no clue what did what. [...] Because then
you would start with one thing or start with another thing
and just try until you hit and could say that oh well, it is
approximately that I want. With this method you actually
just try it out."

Another user commented on one of the interactions:

I do not understand the physics behind it, but I under-
stand what I must do.

The majority of users reported enjoyment when using the
system. Some users reported that they lost a sense of time,
i.e., it took them longer to complete tasks than they perceived.
This is in accordance with our goal of seamlessly integrating
our approach into possibly playful content creation systems,
where efficiency and minimal task completion time are not
the foremost objectives, but engagement within the content
creation process. It was, however, generally difficult for users
to accurately express acceleration compared to velocity or
position. Techniques based on our approach should therefore
use acceleration carefully.

Limitations and future work
Our approach is targeting novice users. Experienced develop-
ers are most likely faster and much more accurate by inputting
meaningful numbers in a conventional way. The proof-of-
concept system has to deal with technical and human limita-
tions. Examples include inaccuracies like noisy tracking and
hand jitter. Furthermore, we are limited by the physical and
biomechanical limitations inherent to physically describing
curves in space. The performance is also affected by cogni-
tive abilities like timing skills. Our proof-of-concept system
implements a very small sub set of possible properties and
techniques. Future research could investigate alternative tech-
niques to further explore the design space of our approach.
For instance, to train mass, users could adjust the muscle ten-
sion of their arm to mimic lifting a heavy object. A different



purpose for our approach would be queries for objects and
materials. For instance, by demonstrating how an object slides
along a surface could set the virtual surface material to ice.

CONCLUSION
We presented Inpher, a system for setting physical properties
using mid-air interaction. The design is based on the ability
of humans to express physical motion based on experience
and intuition. Our case study showed that users with little
physics background were able to train bounciness, relative
mass and friction of virtual objects. The results indicate that it
is in fact possible to infer physical properties from interactions
with virtual objects. Our approach can be used as an integral
part of content creation systems for novices. We envision
many different applications, which can potentially incorporate
our approach. Examples include level editors, puzzle games,
interactive systems for education and more.
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