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Figure 1. OptiSpace enables the development of interactive room-scale 3D projection mapping applications independently of the target environment.
(a) Developers create virtual scenes and define spatial attributes. (b) OptiSpace measures room geometry and user viewing behavior in the target
environment, including surface visibility. (c) OptiSpace optimizes the placement and projection of virtual objects in the target environment. We use an
extended version of covariance matrix adaption. Optimal positions are depicted in yellow. (d) The content is placed such that it can be projected, is
visible to the user from as many viewpoints as possible, and satisfies additional constraints specified by the developer.

Abstract
We present OptiSpace, a system for the automated placement
of perspectively corrected projection mapping content. We
analyze the geometry of physical surfaces and the viewing
behavior of users over time using depth cameras. Our system
measures user view behavior and simulates a virtual projec-
tion mapping scene users would see if content were placed
in a particular way. OptiSpace evaluates the simulated scene
according to perceptual criteria, including visibility and visual
quality of virtual content. Finally, based on these evaluations,
it optimizes content placement, using a two-phase procedure
involving adaptive sampling and the covariance matrix adap-
tation algorithm. With our proposed architecture, projection
mapping applications are developed without any knowledge of
the physical layouts of the target environments. Applications
can be deployed in different uncontrolled environments, such
as living rooms and office spaces.
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INTRODUCTION
3D projection mapping creates the illusion of volumetric vir-
tual objects by projecting content such as 3D models onto
physical surfaces with real-time perspective correction. This
technique is promising in terms of providing augmented reality
for uninstrumented users [6].

One core difficulty is that not all surfaces are suitable for pro-
jection mapping. Surfaces might be out of the field-of-view of
the projectors. Furthermore, many dark or reflective surfaces
cannot be projected on, despite advances in projection technol-
ogy and projector calibration. Large distances between virtual
objects and physical surface or virtual objects that spread over
multiple physical surfaces with different distances from the
user, cause contradicting depth cues (see Figure 2). A mis-
match in motion parallax of real and virtual edges makes the
object appear as if it were moving when viewing it from dif-
ferent angles. Furthermore, perspective correction potentially
requires a lot of physical space (see Figure 3). Consequently,
the placement of virtual content within 3D projection mapping
scenes is very difficult.

The most widely used approach for addressing this problem is
a careful manual design of content placement and/or projection
surfaces. However, if projection mapping is to be used in
common living rooms [17] and offices [20], this approach
clearly is not practical, since it requires an expert to be present
in the target environment.

Current solutions to this problem entail either manual input
from end-users [15] or from content designers [19]. Other
approaches are limited to 2D [21, 9, 22] or ignore user per-
spectives [25].
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a)           b)

Figure 2. A user is watching a virtual cube, which is projected onto a
physical surface using perspective correction. The eyes are not focusing
on the intended virtual surface (a), but on the physical surface behind
it (b). Bipolar vision, eye convergence and eye accommodation provide
depth cues, which eliminate the illusion of a volumetric virtual object.
However, with increasing absolute distance between the user and the
virtual object, the problem becomes less apparent.

To solve the problem of automatic content placement for 3D
projection mapping, we present OptiSpace, which:

1. analyses the geometry of physical surfaces and the viewing
behavior of users over time using rgbd cameras,

2. clusters measured user perspectives,

3. simulates the scene users would see if content were placed
in a particular way,

4. evaluates the simulated scene according to perceptual cri-
teria, including visibility and the visual quality of virtual
content,

5. optimizes content placement, using a two-phase procedure
involving adaptive sampling and the covariance matrix adap-
tation algorithm.

Figure 1 provides an overview. With our architecture, projec-
tion mapping applications can be developed once, without any
knowledge of the physical layout of the target environment.
This is relevant, because a lack of scalability of projection
mapping content is a major factor constraining spatially aug-
mented reality in uncontrolled environments such as living
rooms.

We envision many different room-scale projection mapping
applications ranging from games and entertainment to 3D
telepresence in the living room. For example, in a projection
mapping telepresence application, multiple participants could
be scanned in 3D at their respective locations. Their scaled-
down bodies could be shown as projection mapped models
in each others’ rooms, where they could also move and walk
around. The system places each participant optimally in each
room. The local user can walk around, while all participants
are always shown correctly.

RELATED WORK

Projection mapping
The creation of augmented reality for uninstrumented users
through placement of projectors and cameras in interactive
rooms is a vision, which has been around for a long time [20].
Today, this vision can be realized simply with off-the-shelf
components [28], which has spawned an active research field

a)           b)

Figure 3. Virtual objects require nearby physical surfaces for projec-
tion mapping. (a) The virtual object (opaque) is far from the physical
surface. Perspective correction requires a lot of physical space when
viewed from the right (blue shade) or left (red shade). It extends beyond
the available surface. (b) The virtual object is closer to the physical sur-
face and perspective correction requires less space. Furthermore, the
negative effects of contradicting depth cues are decreased.

of interactive projection mapping. Content can be 2D, and ap-
pear to be on physical surfaces in the room. Alternatively, the
user’s perspective can be tracked, and perspective correction
can be applied, such that it appears to be placed in 3D space
inside the room. A large variety of systems demonstrate the
potential and benefits of this approach.

To name just a few examples, RoomAlive [17] provides a
calibration approach for multiple projectors and cameras,
as well as a number of interactive games and experiences.
Room2Room [19] presents a telepresence application in pro-
jection mapping augmented reality. The Other Resident [1]
provides an artistic experience using interactive projection
mapping.

Content placement
One core difficulty of interactive projection mapping is the
placement of content, which needs to be adapted to the actual
room geometry of each target environment. We focus on
uncontrolled target environments like living rooms, i. e., the
geometry is unknown during development.

One approach to addressing this issue is simplified manual con-
tent placement by the user. For example, with Ubi Displays
[15], users define display and touch regions in the environ-
ment manually. The main drawback of this approach is that
users might find manual content placement cumbersome and
possibly difficult.

With semi-automatic content placement, the content creator
manually defines a set of possible content areas, while the
system automatically decides between them. This approach
is followed in the Room2Room system of Pejsa et al. [19], a
conferencing system for the living room, which displays the
remote participant using 3D projection mapping. The system
takes missing depth cues into consideration, as well as other
constraints like preserving distance between participants.

Fully automatic content placement systems place content with-
out any intervention from content designer or user. This ap-
proach is related to the problem of view management for head-
mounted AR systems [2]. With respect to this problem, AR
content (e.g., labels) is placed within the field of view of a



user, so as to maximize legibility. Most automatic content
placement approaches for projections reduce the problem to
2D, and many ignore user perspectives. SurroundWeb by Vilk
et al. [25] displays web content around a TV in a living room.
Their solution is an abstraction for rendering onto flat surfaces,
without disclosing the actual room layout to third party ap-
plications. [21, 9, 7] automatically identify free regions with
good reflectance properties for projection. [22] takes occlusion
from the user’s point of view into account.

One drawback of placing content according to the instanta-
neous user perspectives is that placement becomes sub-optimal
as soon as users move. In such cases, content needs to be
moved, which might not be desirable in the view of layout
consistency and spatial memory of the user. This issue can
be addressed by aggregating user perspectives over time and
placing content according to aggregated user perspectives.
In our prior work [8], we addressed the problem of placing
physical displays in a multi-display environment. We tracked
user perspectives with Kinect cameras and created volumetric
heat maps of user attention in the space. Based on these heat
maps, we optimized display positions on physical surfaces us-
ing joint gradient descent. The main difference to our current
paper is that we address the more general, and indeed more
complex problem of placing content in 3D. Further, in addition
to optimizing over volumetric heat maps, we render the view
from user perspectives, leading to a more flexible solution.

Projector calibration
An alternative way to deal with surfaces that are difficult
to project on is projector calibration [5, 4]. High-precision
calibration techniques compensate for reflectance properties
by using radiometric compensation (see for example [26],
[10]). These techniques allow for a wide range of possible
surfaces to be used for projection in non-optimized envi-
ronments. Some of the approaches use multiple and largely
overlapping projectors [24, 18]. However, uncontrolled
environments generally contain objects and surfaces, which
exceed the hardware or physical limitations of projectors,
for example, in terms of luminance, or are shaped so that
they cannot be illuminated entirely, because of self-shadows.
The properties of these surfaces cannot be compensated for,
even with previously discussed techniques. Furthermore,
calibration techniques generally only account for the physical
properties of the environment, but not for how it is used and
with regard to which surfaces are generally well visible for
users. Projector calibration is therefore complementary to our
approach.

In summary, our main contribution, compared to re-
lated work, is the fully automatic content placement in 3D
based on aggregated user perspectives. This has the core
benefits of scalability through independence of content from
room geometry, as well as robustness for moving users.

SYSTEM OVERVIEW
This section provides a brief overview of the main components
and our example setup.

Figure 4. Projector and Kinect arrangement of all the examples given
in this paper. Projector 1 is illuminating downwards using a mirror,
typically for projecting onto a table. Projectors 2 and 3 are illuminating
the room’s walls or large objects like whiteboards. The three KinectV2
devices are capturing the environment from three orthogonal viewing
angles. Kinects 2 and 3 are not in the picture.

Example setup
Our example setup consists of three KinectV2 depth cameras
and three BenQ full HD projectors, as can be seen in Fig-
ure 4. Projector and Kinect postures are calibrated using the
RoomAlive Toolkit [17]. All examples in this paper use this
arrangement of Kinect and projector devices, but various dif-
fering room layouts.

OptiSpace components
OptiSpace consists of three phases:

In the design phase, the developer creates the virtual scene
and mainly specifies parameters to control the placement.
There is no knowledge about the target environment at this
point. We discuss the details in the Design phase section.

When deploying in a target environment, the data acquisition
phase is executed. The visibility and suitability of surfaces
in the target environment are measured while users interact
within it. Furthermore, static surfaces are reconstructed and
user viewpoints are measured and sampled. This phase is
executed once per target environment, before the actual ap-
plication is running. We implemented a dedicated OptiSpace
Data Acquisition Application, which generates the output data.
We discuss the details in the Data acquisition section.

During the optimization phase, virtual content is placed
based on the acquired data and on object-specific properties
defined by developers. The optimization phase has to be exe-
cuted once per application per target environment after data
acquisition. We discuss our optimization in the Optimization
section.

DESIGN PHASE
Developers of an OptiSpace application need to define certain
parameters to be later used during optimization.

Design vector vd
The design vector describes the aspects of the scene that the
content developer wishes to adjust to the room geometry. It
is given by vd ∈ IRNd , where Nd is the number of entries of



Figure 5. A design vector for a scene with two cubes. The first cube can
be positioned and scaled uniformly. The second cube can be positioned
and rotated around the X and Y axis. This defines the design space of
this scene for the optimization algorithm.

the design vector. The dimension of the design vector and
the semantics of the entries depend on the scene to be opti-
mized. In the simplest case, only the positions of objects are
adjusted, as described by three design vector entries per object.
Developers can combine different semantics and set min and
max values to build the design vector. For instance, we also
implemented an automatic adjustment of the scale and rotation
of virtual objects. Scale can be uniform or anisotrop, absolute
or perceived, i.e., relative to viewpoint distance. Rotation can
be a combination of yaw, pitch and roll. The optimization algo-
rithm uses the defined design vector to control the scene state.
Defining the design vector elements is crucial for achieving
the desired optimization results.

Layout quality QL
Developers can improve the optimization results by provid-
ing a layout quality function QL to indicate desired spatial
attributes of virtual objects and relationships between virtual
objects. This is mostly used to implement soft constraints.
Content developers can specify preferred sizes of objects, min-
imum distances between objects, or other criteria. The output
of the function has to be a real number between 0 (lowest
quality) and 1 (highest quality). For example, for the scene
in Figure 5, developers can define a preferred scale sp for the
first cube and a minimum distance dp between the cubes. The
layout quality function is then given by:

QL = qs ·qd

qs =
1

1+ ||s− sp||φs

qd = 1− 1
1+max(0, ||~p1−~p2||−dp +1)φd

Here, s is the design vector element containing the current
uniform scale for the first cube. ~p1 and ~p2 are the positions
of the cubes. φs is an exponent for defining how strictly the
size has to be at the preferred level. φd defines how sharply
the quality declines when objects have a distance around dp.

Developers are free to define any terms and functions in order
to calculate the layout quality.

DATA ACQUISITION
When deploying an OptiSpace application, the environment
and the users are tracked for a certain period of time to measure
the suitability of surfaces for projection. The data is then post-
processed to generate output data to be used by the optimizer
and the target application.

Before starting the data acquisition, installers have to set up
projectors and depth camera devices in the target environment.
All projector and depth camera postures have to be known. For
instance, OptiSpace can use the output intrinsics and extrinsics
of a RoomAlive calibration [17].

Measurement
After calibration, the measurement can be started (see Fig-
ure 6.1). Users interact in the environment as they would
normally (see Figure 6.a).

Capture
Based on the real-time streams of the KinectV2 devices, a
point cloud and triangulation of the current room geometry
is created at every frame. For every surface point, the local
surface brightness is measured, using the KinectV2 infrared
streams. The skeleton tracking functionality of the KinectV2
SDK provides information about users’ head positions and
orientations. We merge multiple skeleton streams into one
global representation similar to [23]. Figure 6.b is an example
of a frame during capturing.

Voxel grid
During measurement, the environment is split into a regular
grid of voxels (see Figure 6.c). Each voxel contains the follow-
ing data, which is updated with every frame during capturing:

• Geometric persistence. Measures how persistently sur-
face points were present within the voxel (similar to [8]).

• Illumination voxels. Measures whether the voxel is il-
luminated by a projector and how bright the surface is at
that voxel. Illumination is only measured whenever the
voxel contains surface points during that frame. We check
whether the voxel is within a projector’s view frustum and
perform raycasts from the projectors to the voxel. If the ray
hits the mesh of the real-time capture before reaching the
voxel, then the voxel is in a shadow and we set the illumi-
nation to zero. If the line of sight is free, i.e., the voxel is
illuminated, we determine the surface brightness from the
infrared streams. If the surface brightness is below a certain
threshold, i.e., a dark surface does not reflect much of the
projector light, then we set the illumination to zero.

• Visibility voxels. Measures how visible the voxel is for
users (similar to [8]). This takes into account how often the
voxel gets occluded, the average viewing angle and whether
the voxel is generally in the central field of view of users.
Visibility is only measured whenever the voxel contains
surface points during that frame.

• View voxels. Measures, how long a user’s head was within
the voxel.

All the calculations are made every frame and the results are
normalized at the end.

Post-processing
The output data is based on the voxel grid. First, we recon-
struct the static parts of the environment, based on voxels with
high persistence (see Figure 6.2). The illumination and vis-
ibility values from the voxel grid are transferred to the UV



1. Measurement

(a) Setup (b) Capture (c) Voxel grid

2. Post-processing

(d) Illumination (e) Visibility (f) Result data

Figure 6. The data acquisition is split into (1) measurement and (2) post-processing. (a) The user interacts in the environment. For this photo,
projectors emit white light so as to highlight projector shadows. (b) The surface geometry and the user are captured in real-time. (c) A voxel grid stores
surface data (blue) and viewpoints (green to red). The user mostly looked from the viewpoint voxel in red and occasionally moved through the green
ones. (d) Illumination of the static surfaces by the projectors over time. (e) Surface visibility over time (white: well visible). (f) Combined data. The
view voxel centers (small spheres) are clustered to create representative viewpoints (big spheres).

coordinates of the reconstructed mesh to allow for fast GPU
access and interpolation. The resulting data on the mesh after
the post-processing is visualized in Figure 6.2. Figure 6.f
shows the final result, combining illumination, visibility and
viewpoint clusters. The raw voxel grid is no longer needed
after post-processing is complete.

Clustered viewpoints~ui
We cluster the raw viewpoint voxels into a set of Nv viewpoint
clusters using k-means. By doing so, we reduce later calcu-
lations to a small number of representative viewpoints. The
clustered viewpoints are weighted according to the relative du-
rations of the view voxels. We denote the clustered viewpoints
~ui ∈ IR3, i∈ [1,Nv], and the associated weights ωi ∈ [0,1]. The
weights ωi are normalized to the unit interval and represent
the relative importance of each viewpoint cluster.

Visibility versus viewpoint data
The visibility measurements along the surfaces are providing
information, which can not be inferred with the viewpoints
alone. Visibility measures temporary occlusions and not only
occlusions of static surfaces. That is, even if many viewpoints
have a clear view to a static surface, the visibility of that
surface might still be low, for instance, because of occlusions
by the user’s hand or clutter due to moving physical objects.
Lastly, viewpoints do not contain information about the view
direction. Instead, the combination of viewpoints and surface
visibility ensures that objects are not placed behind users.

OPTIMIZATION
Based on the processed data, we optimize the layout of the
developer’s virtual scene. The design vector (see Design vec-
tor vd) is used as an interface by the optimizer to control the
scene state, i. e., postures of virtual objects.

Objective Function
The objective function fo evaluates the quality of the current
scene state. It is given by:

fo : IRNd → [0,1]
fo = QP ·QL

The input for the objective function consists of the current
design vector values. The output of the objective function is a
real number between 0 (lowest quality) and 1 (highest quality).
QP is the projection quality and describes the perceived qual-
ity of the projection, given the room geometry, projector poses
and a set of user viewpoints. In contrast, the layout quality
QL describes the scene layout quality, independently of the
projections on the surfaces. It is defined during the design
phase, as described in Layout quality QL.

Projection quality QP
We calculate the projection quality on a per object basis with
each virtual object’s projection quality Qo ∈ [0,1]. Given a
set of user viewpoints as defined in Clustered viewpoints ~ui,
Qo describes the quality of the object’s projection from these



viewpoints. It is given by

Qo = qill
φill ·qvis

φvis ·qdist
φdist

The terms qill , qvis and qdist are independently calculated qual-
ity terms. The exponents φill , φvis and φdist can be used to
adjust the influence of each term.

The illumination term qill ∈ [0,1] describes how much of the
content can be projected by at least one projector. 0 means
that no projector can display any of the projections, since it is
outside their field-of-view or in permanent shadow. 1 means
that all projections can be displayed at all times.

The visibility term qvis ∈ [0,1] describes how likely it is that
the projections will be visible for users according to their
measured view behavior.

The distance term qdist ∈ [0,1] describes how close the points
along the surface of the virtual object are to the physical sur-
face when seen from the user perspective. This accounts for
depth discrepancies (see Figure 2). To describe qdist more
formally, we first define the distance discrepancy pdist for one
viewpoint~ui and one point ~sv on the virtual surface:

pdist =


||~dv||
||~dr ||

, if ||~dv|| ≥ ||~dr||
||~dr ||
||~dv||

, if ||~dv||< ||~dr||

~dv = ~sv−~ui, ~dr = ~sr−~ui,
~dv

||~dv||
=

~dr

||~dr||
Here, the physical surface point ~sr is the closest intersection
point with the physical surface of the line of sight looking
from~ui through ~sv. As seen in the equation, pdist depends on
the ratio of the distances and not on the absolute difference.
This accounts for the decrease in depth discrepancies with in-
creasing distance between user and real surface. The resulting
distance term qdist integrates pdist over all viewpoints and over
all viewpoint-visible points ~sv along the surface of the virtual
object.

The overall projection quality QP of the entire scene is the
product of all object projection qualities.

QP = ∏
Ob jects

Qo

This implies that a poor score for at least one object leads to
a poor score for the entire scene. We provide details on how
we calculate the projection quality in the Projection quality
estimation subsection.

Optimization algorithm
Since we do not have an analytical representation of the objec-
tive function, we opt for a gradient-free optimization technique,
namely CMA-ES for covariance matrix adaptation evolution
strategy [11]. The central idea of this algorithm is to sam-
ple the parameter space, represented by the space of design
vectors vd ∈ IRNd and to fit a multivariate normal distribution
to the data. New samples are drawn from this distribution to
update the mean and covariance matrix for the next iteration.
For details, we refer the reader to [14, 13, 11]. The algorithm’s
ability to naturally incorporate box constraints (bounds on the

Figure 7. Estimation of the projection quality of one virtual object’s
current pose. The room’s walls are not depicted for the sake of simplic-
ity. (a) is a virtual cube and (b) is one of the projections onto the surface
mesh. The surface mesh and the virtual object are rendered from the
sampled viewpoints using a shader that calculates the projection quality
at each pixel. The pixel colors and transparencies in the three render-
ings encode the distance from the viewpoint, as well as the illumination
and visibility for fast GPU processing. Gray regions are not illuminated.
Rendering number (3) of the virtual cube contains pixels that are not
projected onto a physical surface (red regions in the cube), which leads
to a low overall projection quality.

elements in vd) is very convenient in our scenario. CMA-ES
has been shown to be superior to competing black-box opti-
mization algorithms for a large class of complex optimization
problems [12].

Naturally, CMA-ES works best for convex objective functions
that resemble a normal distribution. Locally, that is, when
optimizing parameters for projection on a single surface, we
observe that this assumption is fullfilled very well. However,
in the case of multiple objects and many different potential
projection targets, the algorithm might get "stuck" at a local
minimum. Moreover CMA-ES is known to underperform for
separable functions. If several objects have no interaction
terms, then the algorithm cannot leverage the fact that these
objects can be optimized independently. For these reasons, a
good start configuration is necessary in order to yield good re-
sults. We therefore propose a two-phase optimization strategy
where good starting points are computed before starting the
full optimization.

In the first phase, we sample the objective function for each
object individually on a regular grid (using a resolution of 103

grid points). At each grid point, we only consider position
and scale parameters and evaluate the objective function for
8 scale values that are uniformly distributed on the allowed
interval for the scale parameter. The minimum energy value
for all optimizations is stored for each grid point. Since we
expect optimal object positions to be close to projection targets,
we first compute the distance between the grid point and the
closest point on the geometry and skip the objective evaluation,
if this distance exceeds a certain threshold.

For this grid, we compute local maxima, i. e. points that have
an energy value exceeding that of all of its up to 6 neighbors.
All these maxima are clustered according to proximity, so as



to consolidate multiple close extrema. We call representatives
of these clusters candidates. There are usually one or more
candidates per projection surface and object. Note that we do
not consider interaction terms between the objects up to this
point.

For the second phase, the candidates for each object serve
as starting points for several runs of CMA-ES. For a fixed
number of iterations, starting positions for each object are
chosen at random from their candidates. The CMA-ES now
optimizes for all parameters in the design vector, this time also
considering interaction terms like minimal pairwise distance
and rotations. The final result is the design vector of highest
energy encountered.

Using this two-phase approach, we overcome the problem of
local minima by choosing different promising start configura-
tions. An alternative approach would be to adaptively sample
the space of design vectors on a regular grid in IRNd similar to
[8]. In our case, however, the dimension of the design space
is much larger and a regular sampling strategy becomes inef-
ficient. Our approach combines regular sampling in the first
phase with CMA-ES iterations.

IMPLEMENTATION
This section provides some details about our infrastructure,
software and our GPU implementation of the projection quality
estimation.

Projection quality estimation
To estimate the terms of the projection quality, we render the
virtual objects from the viewpoints~ui that we clustered during
the post-processing phase of the data acquisition. For each
object and viewpoint, the mesh surface and the virtual object
are rendered, using a virtual camera, which is looking from
the viewpoint to the object. We implemented shaders that use
RGBA colors to encode illumination, visibility and distance.
Figure 7 shows an example. The reconstructed mesh surface
and the virtual object are rendered into two different buffers.
Note that the surface mesh encodes surface quality data in the
UV coordinates. During rendering, three aspects are measured
for each pixel:

• Illumination. This can be determined from the UV co-
ordinates of the surface mesh at this pixel and is used for
calculating qill .

• Visibility. This can be determined from the UV coor-
dinates of the surface mesh at this pixel and is used for
calculating qvis.

• Distance. The distance of the unprojected pixel in world
coordinates to the viewpoint. We apply the inverse model-
view-projection matrix to the normalized device coordinates
of the pixel which gives us the pixel-position in world-
coordinates. This is later used for calculating qdist .

A compute shader combines the renderings to calculate and
average qill , qvis and qdist on a per-pixel basis.

The steps for evaluating one virtual projected object are listed
in Figure 8.

function PROJECTIONQUALITY(Ob ject)
qill = qvis = qdist = 0 . Reset
Wpix = 0 . Sum of all pixel weights
for all Viewpoints~ui, i ∈ [1..Nv] do

Set camera to look from~ui to Ob ject
//Render physical surface with shader into first texture
Clear texture TS with rgba(0, 0, 0, 0)
Render MeshSur f ace into texture TS with shader:
for all Pixels PS to render in TS do

PS:red = ||PS
cam|| . Distance to viewpoint

PS:alpha = UV.x . Illumination
PS:green = UV.y . Visibility

end for
//Render virtual object with shader into second texture
Clear texture TV with rgba(0, 0, 0, 0)
Render Ob ject into texture TV with shader:
for all Pixels PV to render in TV do

PV :red = ||PV
cam|| . Distance to viewpoint

PV :alpha = ωi . Viewpoint weight
end for
//Combine, calculate and add up with compute shader
for all (PS

j ,PV
j ), j ∈ [1..#pixels] do

wpix = PV
j :alpha . Pixel weight

qill+= PS
j :alpha · wpix

qvis+= PS
j :green · wpix

qdist += (PS
j :red > PV

j :red ? PV :red
PS :red

: PS :red
PV :red

) · wpix

Wpix += wpix
end for

end for
qill /= Wpix
qvis /= Wpix
qdist /= Wpix

end function
Figure 8. Simplified steps for estimating the illumination, visibility and
distance for one projected object using multiple viewpoints. Note that
the pixel weight wpix equals zero where no virtual pixel is drawn.

Render modifiers
Static virtual 3D objects are only a very basic use for interac-
tive projection mapping environments. To support dynamic
content, we implemented a render modifier concept. Devel-
opers can control how objects are rendered during projec-
tion quality estimation. For instance, virtual 3D characters
or creatures are typically animated. To account for this, a
render modifier renders multiple animation states of the an-
imation into the same viewpoint rendering (see Figure 9.a).
Furthermore, render modifiers can adapt to the current sample
viewpoint during projection quality estimation. In interactive
projection mapping environments, objects adapt to the user’s
viewpoint not only in terms of perspective correction, but pos-
sibly also for more specialized behavior. For instance, content
can be programmed, so as to always face the viewer, which
is common for perspective corrected text (see Figure 9.b) or
spatialized desktop windows. More complex use cases are vir-
tual articulated objects, which change their posture, depending
on the viewing angle (see Figure 9.c). Besides these default
render modifiers, developers can define any render modifier to
improve the accuracy for the projection quality estimation and
hence for the optimization.

Hardware and software
Our hardware consists of multiple KinectV2 devices, each
connected to an Intel NUC Mini-PC. Depth and infrared data
is streamed via Ethernet to the central PC. We combine the



a) Animation modifier

b) Billboard modifier

c) Articulated posture modifier

Figure 9. Example render modifiers. (a) Projection quality for an an-
imated object (a wing-flap motion) on a whiteboard. Rendering multi-
ple animation states at once (right) reveals that parts of the object are
not projected at certain points in time during animation. (b) Perspec-
tively corrected text always faces the viewer (orange sphere). (c) The
creature always looks at the viewer and adjusts its articulated posture
accordingly. This is taken into account when projecting from different
viewpoint samples (right).

Kinect streams similar to [23]. Furthermore, we downsam-
ple the streams and use the depth compression algorithm by
Wilson [27] to reduce network traffic. Our framework also
handles projection mapping and other rendering-related func-
tionalities. The OptiSpace Data Acquisition Application for
processing the 3D data is implemented in Unity.

The framework for developers is implemented as a Unity plu-
gin. Developers create Unity GameObjects and attach com-
ponents according to their desired properties for optimization.
An additional GUI and visualization tool built as a Unity Ed-
itor plugin allows for adjustments and the testing of design
vectors and layout quality functions. Furthermore, we pro-
vide abstract C# classes to extend the set of components for
optimization. For instance, if developers want to add further
design vector elements, they need to create a mapping between
scene properties and the design vector entries. One example is
a design vector entry, which controls a non-rigid shape of an
object.

Our optimization algorithm is implemented as a native C++
plugin. The algorithm builds on top of the cmaes library [3].
The projection quality is implemented as a set of NVIDIA CG
shaders and a compute shader for fast parallel processing of
viewpoints.

Performance
To increase performance, we dynamically adapt the accuracy
of the projection quality estimation. That is, for the initial
search of candidate positions, we reduce the resolution of the
renderings and number of viewpoints (currently 4 viewpoints
with a 128x128 resolution). For detailed placement around the
candidate placements, we increase the resolution as high as
512x512 and 16 viewpoints.

The time needed for the optimizer to find an optimal scene
layout depends on various factors. Depending on the complex-
ity of the scene to be optimized, we render between 100000
and 500000 viewpoints. Finding an optimal placement usually
takes around 1 to 2 minutes.

RESULTS
In order to explore how well the system adapts content to
different target environments, we conducted a small trial. We
invited 10 participants to do a one hour working session with
different room layouts. Participants were asked to bring their
laptop and work as they normally would. There was no super-
vision and participants simply performed their everyday work
tasks. We created two virtual scenes. The first is a perspec-
tively corrected notification, and the second consists of three
virtual creatures. We recorded participants and acquired data
as described in the Data acquisition section. A few examples
are shown in Figure 10.

• Figure 10.1: This participant generated many viewpoint
samples. The notification is placed at the canvas in front of
him.

• Figure 10.2: Even though clearly visible, the temporary
shadows (dark shades) render most parts of the whiteboard a
poor display surface. The notification is placed at a location
where the participant did not cause projector shadows.

• Figure 10.3: This participant worked at the table. The
optimizer positioned the virtual plant on the physical table
at the wall.

The results make us confident that OptiSpace can find suitable
virtual scene layouts for diverse target environments.



1) Room with table and canvas 2) Room with whiteboard 3) Room with table and wall

Figure 10. We invited several participants to test our system with different room layouts and viewing behaviors. The first row shows the different
target environments. The second row shows how OptiSpace adapts the virtual scene to this target environment.

EXTENSIONS
In order to explore the broader potential of our approach, we
have developed a number of extensions to our system. To
further utilize the measured data, we implemented a runtime
API, i. e., OptiSpace can run as part of the target application
after the initial optimization. The runtime API has two parts:
online measurements and data access.

Online measurements
Instead of or in addition to measuring viewpoints, illumination
and visibility in the data acquisition phase, the values can be
updated during runtime. A specialized runtime measurement
routine is designed to meet real-time requirements. Instead
of maintaining a voxel grid, we directly update the values
on the reconstructed static surface mesh. For instance, we
measure projector shadows on the mesh and update the values
for brightness in real-time.

Figure 11. Example of a quality-sensing interactive object. The sensors
depicted in green evaluate the projection quality around the object so as
to adjust the movement direction. The creature crawls from (1) to (3)
around a dark spot, where it would not be projectable, due to a dark
object being on the table.

Real-time quality sensing
Besides optimization, we allow for low-level access to the mea-
surement data during runtime - regardless of whether the data
is still updated online. Furthermore, we provide higher-level
functionalities called quality sensing objects (see Figure 11).
An object can access the terms of the projection quality and the
gradients locally to react accordingly in real-time. Figure 12
shows some examples for quality-sensing objects.

DISCUSSION AND FUTURE WORK
OptiSpace enables content developers for projection mapped
augmented reality to develop content independently of the
room geometry where the content is to be shown. Previously,
content usually had to be carefully adjusted to a specific room
geometry, and was not directly reusable for other rooms. With
OptiSpace, the same content can be reused without changes.
This improvement in the scalability of projection mapping con-
tent might eradicate a significant factor constraining projection
mapped augmented reality.

While we have tested OptiSpace with 10 different room lay-
outs and users, evaluating it with multiple content developers
remains to be done. In particular, it would be interesting to see
how easily content developers can adapt to describing their
intentions in the design vector and layout-quality function.

More generally, we see OptiSpace as an example of interfaces
that simulate the perceptions of the user and adapt accordingly.
Such interfaces could create a model of the visual scene that
users perceive, including user perspective and real and vir-
tual objects. They would then render the scene users would
perceive if the system were to behave in a certain way. They
would evaluate this perception and optimize the system ac-
tions accordingly. We believe such interfaces could contribute
greatly to human-computer interaction by making interfaces
adapt not only to actual user behavior, but also to their physical



Figure 12. Examples of quality-sensing objects utilizing different terms
of QP. (a) The fish swims within the whiteboard where it can be pro-
jected. The visibility is ignored. (b) The skull always moves so that it is
outside the field of view of the user in the picture, but can be projected
for the user behind the camera. (c) Whenever it becomes visible, the
creature crawls into hidden places. It searches for locations with high
projection quality, but low visibility.

surroundings. Such interfaces could adapt not only content
location, but also motion, shapes, colors, brightness, contrast,
etc. Thus, they could blend much better into their visual envi-
ronment, not only in the case of augmented reality, but possibly
also for more conventional desktop and mobile interfaces. One
particular example of how this approach could be used would
be implementing the vision of change-blind information dis-
plays [16]. Updated and changed displayed information in
ubiquitous computing environments might capture attention
and thus disrupt users. Using a system like OptiSpace, we
could keep information static whenever users see it and only
update it when users cannot see it, e.g., when it is temporarily
occluded. This approach would exploit the effect of change
blindness and reduce the number of distractions in ubiquitous
computing environments.

CONCLUSION
We have presented OptiSpace, a system for optimizing the
placement of interactive projection mapping content, based
on empirical user behavior. Developers implement interactive
projection mapping applications just once, without knowl-
edge of the actual room geometry or possible user viewing
angles. Applications can then be deployed in different un-
controlled environments, not necessarily by the developers
themselves. OptiSpace automatically measures the target envi-
ronment, including users, who are completely uninstrumented.
Our optimization is based on our measurements and various
programmable attributes and behaviors. We have proposed an
approach to estimating the quality of perspectively corrected

content. The generic design of our architecture makes it ap-
plicable to a broad range of dynamic interactive projection
mapping applications for uncontrolled environments.
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