
SpaceState: Ad-Hoc Definition and Recognition of
Hierarchical Room States for Smart Environments

Andreas Fender1, Jörg Müller2

1Aarhus University, Denmark, andreasfender@cs.au.dk
2University of Bayreuth, Germany, joerg.mueller@uni-bayreuth.de

Room state 1: Work Room state 2: Meeting Room state 3: Coffee break

Figure 1. Designers create spatial user interfaces and design variations for each purpose of the same physical space. SpaceState automatically switches
to the intended content based on the physical layout of the room. Example application: an adaptive room-scale video conferencing system. (1) Work
state. If the local participant is working at the whiteboard, then the whole body of the remote participant is displayed on the whiteboard. Depending on
whether the local participant is standing left or right, the remote participant is displayed right or left. (2) Meeting state. If a large table is in the room,
but no whiteboard, then the caller’s face is displayed on the table. (3) Coffee break state. The remote participant cannot call in during this state.

Abstract
We present SpaceState, a system for designing spatial user
interfaces that react to changes of the physical layout of a
room. SpaceState uses depth cameras to measure the physi-
cal environment and allows designers to interactively define
global and local states of the room. After designers defined
states, SpaceState can identify the current state of the physical
environment in real-time. This allows applications to adapt the
content to room states and to react to transitions between states.
Other scenarios include analysis and optimizations of work
flows in physical environments. We demonstrate SpaceState
by showcasing various example states and interactions. Lastly,
we implemented an example application: A projection map-
ping based tele-presence application, which projects a remote
user in the local physical space according to the current layout
of the space.

Author Keywords
Point clouds; State recognition; Spatial user interfaces;
Interface toolkit; Projection mapping

INTRODUCTION
Digital augmentation of physical spaces is one of the longest
standing visions in Human-Computer Interaction. The Office
of the Future [29] proposed to turn the majority of surfaces in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISS ’19, November 10–13, 2019, Daejeon, Republic of Korea.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6891-9/19/11 ...$15.00.
http://dx.doi.org/10.1145/3343055.3359715

offices into displays resulting in a spatial user interface. Since
then, this vision has been realized in several implementations.
A wealth of research has built on this concept to explore pos-
sible applications and solve specific problems. For instance,
LightSpace [38] is an implementation using off-the-shelf hard-
ware. The goal of this research area is to seamlessly merge
physical and virtual worlds. However, almost all such systems
require careful design and calibration of the physical environ-
ment, in order to enable augmentation with virtual content.
This is in contrast to realistic usage of physical spaces, which
are frequently rearranged and modified to different degrees.
For most of above examples, such rearrangements break the
virtual augmentation. This prevents users from rearranging
space ad-hoc, like they normally would.

In order to achieve a deeper merging of physical and virtual
worlds, the virtual world needs to adapt to the physical. This
problem was addressed in OptiSpace [8], which automatically
adapts the position of virtual content depending on the avail-
ability of projection surfaces, occlusions etc. This approach
solves the problem on a syntactic level using visibility mea-
surements and automatic calibration in order to enable the
output of virtual content in different physical environments.
However, we argue that the problem is deeper. Physical envi-
ronments are rarely changed randomly, but the change usually
carries meaning. For instance, in an office, meeting room or
seminar room, tables and chairs are regularly rearranged to re-
flect changes of usage of the room. Therefore, a current trend
is to make spaces more and more flexible in regards to their
physical arrangement. Modern furniture and interior design
companies offer solutions for easy physical reconfiguration
depending on the situation, e.g., by attaching wheels to furni-
ture or by designing modular furniture pieces [16]. With this,
offices can be arranged easily, which is especially relevant,

e.g., for workshops, where rearrangements happen frequently
[13]. Digital content should then not only syntactically adapt
to these changes. Ideally, the room layout should change the
semantics of the digital content. The physical and virtual
world should share a common state, with a meaning that has
been carefully chosen by the designer of the virtual content.

We present SpaceState, a system that identifies such states of
a physical space from real-time point clouds. With SpaceState,
designers of spatial user interfaces can easily define physical
states to adapt virtual content accordingly in order to create
systems, which are aware of the current state(s) of the room.
With our approach, states can be defined on the fly without
the need of predefined 3D models. We capture point clouds,
so that states can be defined in 3D space. Furthermore, our
technique divides the space into volumes, which are strictly
either non-overlapping or hierarchical. This allows for defin-
ing independent and hierarchical states. To our knowledge,
SpaceState is the first system, which:

• Allows designers of spatial user interfaces to create content,
which is mapped to the state and sub states of the physical
room.

• Identifies the current state of a room and its sub states in
real-time using a fast voxel-based algorithm.

• Organizes states hierarchically and allows for defining mu-
tually independent states.

In this paper, we describe our voxel grid based approach and
the involved algorithms for defining and identifying hierarchi-
cal states.

EXAMPLE APPLICATION
As a proof-of-concept, we implemented an application proto-
type based on SpaceState. The application draws inspiration
from Room2Room by Pejsa et al. [27]. Using projectors and
multiple Kinect cameras, we illuminate the environment to
project a remote participant onto the surfaces of the local phys-
ical space. The aforementioned Room2Room system assumes
a static environment and only adapts to the location of the local
participant. In SpaceState, we allow for multiple combinations
of furniture arrangement and participant locations to adapt the
projection accordingly. Figure 1 shows how the application
adapts to different states and situations of the room.

Furthermore, the identified states are utilized on the other
end, i.e., at the remote participant. The remote participant is
automatically informed about the current state of the room
before picking up or making the call. That is, the participant
knows beforehand, whether the whole body, only the face or
no video at all will be transmitted. Furthermore, during the
Coffee break state, calling in is automatically disabled.

Walkthrough
In this sub section, we illustrate how the example application
was built in SpaceState. Before starting to generate states and
projecting content, the designer calibrates the system, i.e., the
projectors and Kinect devices (e.g., by using the RoomAlive
Toolkit [39]). Next, the designer initializes the built-in func-
tionality for streaming video from the remote participant. The

goal is to adapt the output of the video stream to the current
room state.

First, the designer arranges the movable furniture in the room
to allow for working on a whiteboard. The designer then
presses a button to capture the room and to create the first
state, which he or she calls Work. He or she then places
the projection of the remote participant on the whiteboard
using the default user interface provided by the Unity3D game
engine. Next, during a meeting, the designer creates a second
room state called Meeting, by pressing the capture button again.
Now he or she places the rendering of the remote participant
on the meeting table as a small window. Lastly, during a coffee
break, the designer creates the third room state called Coffee
break. Except for a small spotlight on the coffee table, nothing
is projected during this state.

The system now automatically distinguishes between the three
states of the room and displays the remote video stream as
defined for each state. However, the defined projections might
not be the most appropriate ones for the variants within a room
state. For instance, if the room is in a meeting state, then
there might still be different chair arrangements. Therefore,
designers can define sub states. Within the Work state, the
designer captures the position of a person in front of a white-
board. The position of the projection can then be defined for
key positions of the person within this room state. For the
Meeting state, the designer defined two sub states: If there is
only a table available, then the projection is displayed as a
small patch (see Figure 1.2). If a whiteboard is present, then
the projection shows the remote participant in full body size
on the whiteboard.

RELATED WORK
Several systems have been developed to make physical spaces
interactive. For instance, RoomAlive by Jones et al. [18]
turns living rooms into immersive displays using projection
mapping. UbiDisplays by Hardy et al. [15] enables ad-hoc
creation of projected displays in physical space. Xiao et al.
present WorldKit [40], which is a tool to create interactive
widgets ad-hoc in physical space.

None of these systems cope with changes of the physical envi-
ronment and they are not aware of its state. In the examples,
projections are calibrated for static environments. We extend
these ideas by not only letting designers create content in phys-
ical space ad-hoc, but also let them define for which state the
content is active. In the remainder of this section, we review
previous approaches in related areas.

State identification
Several approaches for identifying states of spatial data can be
found in medicine. The use of voxel grids have been proven
useful in this area. For instance, with multi-voxel pattern
analysis [2], voxelized patterns of active regions in a brain are
classified to identify stimuli. We base our state identification
on voxel grids as well, but applied to physical space. Related
previous work based on physical surfaces utilized voxel grids
for arranging content in physical space [9, 8] or for visually
manipulating it [21]. However, this paper deals with inferring
the state of the room, whereas adjusting the arrangement of

content is one of the possible use cases. Another approach is
the use of machine learning to identify the current state directly
from video feeds. For instance, Bhatia et al. [4] identify the
progression of a surgery based on predefined states. Danninger
et al. [6] use video streams to identify the activity within an
office and to mitigate interruption by displaying contextual
information, e.g., to visitors at the office entrance. However,
such approaches do not allow for organizing the states in 3D
volumes. Instead of one or multiple video streams, we operate
on one voxel grid, which inherently resolves redundancies
from multiple depth camera viewpoints. This makes defining
spatially independent or hierarchical states easier than with
purely video based approaches.

Adaptive context-aware systems
The context awareness research area has accelerated when
computing moved away from the desktop, and was used in
various different situations. Context has been defined as "any
information that can be used to characterize the situation of
entities (i.e., whether a person, place, or object) that are con-
sidered relevant to the interaction between a user and an ap-
plication, including the user and the application themselves.
Context is typically the location, identity, and state of people,
groups, and computational and physical objects" [7]. Numer-
ous systems that adapted to their contexts have been developed
[30, 1]. The Proximity Toolkit [22] tracks users including their
pose relative to each other and to devices. Similarly, activity
recognition identifies actions and intentions of humans [34,
33, 35]. For instance, Mori et al. [24] built a sensing system to
accumulate and summarize daily activity data. Activity recog-
nition enables a broad range of applications, e.g., in assistive
technology [5], since it allows systems to react to situations
and users’ intentions.

While our work is related to context-aware systems and activity
recognition, we are pursuing a more general approach, which
infers the context from physical surfaces and the physical
layout of the space.

Spatio-temporal grouping
Spatio-temporal grouping techniques generate a structured
representation of independent moving objects and background
[23]. With motion segmentation, moving objects are identified
in dynamic scenes [36, 12]. These segmentation algorithms
are often restricted to objects that meet certain criteria, like
being rigid [31, 37, 28]. Yan et al. [41] propose a general
approach, which is not restricted to rigid bodies. Goh et al.
[14] and Fradet et al. [11] cluster motions of objects. Motion
segmentation is generally object-centric, whereas we do not
focus on separating objects and identifying motions.

3D and 4D reconstruction
Advances in surface reconstruction techniques allow for creat-
ing high accuracy virtual representations of physical surfaces
[19, 42]. The physical space is scanned using RGB or RGB-D
cameras to create an accurate virtual representation, typically
as a 3D mesh. A lot of research has been done in the area
of static and dynamic surface reconstruction, which we refer
to as 3D and 4D reconstruction, respectively. KinectFusion
by Newcombe et al. [26] creates a detailed SLAM based 3D

reconstruction, using a commodity depth camera. A more re-
cent version called DynamicFusion [25] uses voxelized warp
fields to generate 4D reconstructions. Keller et al. [20] and
Süßmuth et al. [32] present 4D reconstruction approaches that
do not rely on voxel grids. Herbst et al. [17] propose a SLAM
approach that copes with changing object locations.

All of these systems focus on creating very detailed meshes to
reconstruct static and dynamic surfaces as accurately as possi-
ble. They typically update the background surface whenever it
changes and overwrite the previous one without representing
the changes [26]. Furthermore, these approaches are often
limited to objects that fit certain criteria like not changing
their topology [25] or being rigid [31]. We are not focusing
on high-precision reconstruction, but instead on representing
different states. Geometric reconstruction of each of these
states can be seen as complementary to our work.

SYSTEM
SpaceState is tracking the physical environment at all times
to define and identify states. During the state creation step,
designers can declare the current room layout as a new state
and position virtual content accordingly. New states can also
be defined as sub states of other states. After a state system
has been generated, SpaceState can identify the current state
of a physical environment in real-time.

All parts are interleaved, while the application is running. That
is, we follow a designer-in-the-loop approach, with which new
states are defined on the fly depending on the current physical
layout. Once a state is defined, it can immediately be identified
and distinguished from pre-existing states and virtual content
can be bound to it. Contents can be images, text, browser
windows, interactive widgets etc.

User interface and workflow
SpaceState features a unified graphical user interface for defin-
ing states as well as for associating content. Figure 2 shows the
user interface of SpaceState. The user interface is integrated
as a Unity3D plugin. Overall, the system is split into two

Figure 2. The user interface of SpaceState is integrated into the Unity
interface. Designers can navigate over a 2D canvas to create and orga-
nize states and content (left). The current point cloud is displayed and
content can be manipulated using Unity’s widgets (right). Based on the
real-time point cloud, designers can create new states at any time by
pressing the "+" buttons of the identifiers in the canvas. Virtual content
can be created and bound to states using drag-and-drop.

connected parts for positioning 3D content and for defining
states. The first part is the Unity scene view, which shows
the real-time point cloud of the physical environment. It is
used for placing virtual content in 3D (see Figure 2 right). The
second part is a 2D canvas, which we call state canvas. The
state system, its hierarchy and the contents are organized on
that canvas (see Figure 2 left). Virtual content is managed in
both parts. The state canvas allows for creating content and
setting properties, whereas the Unity scene view is used for
setting its transformation. The state system is only managed
in the state canvas. Designers can navigate on the canvas and
insert state identifiers at any time. A state identifier contains
any number of states, and it controls, which of its states are
active. State identifiers are represented as boxes with blue title
bars. A button on that title bar triggers the creation of a new
state based on the current physical layout. The new state gets
integrated into the state identifier after a short processing time
while the application keeps running. States are represented as
boxes within their identifiers. Content like images or browser
windows can then be put into the created states to make that
content appear whenever the respective state is active. During
runtime, each state identifier calculates, which of its states is
active. Inactive states are grayed out in the state canvas. Each
state identifier has a second button to configure and investigate
the identifier. Within that menu, designers can see, which state
was active for which amount of time, e.g., to see in which
state the room was mostly in. State identifiers and states can
be dragged out of and into other states and identifiers to ma-
nipulate the hierarchy at any time. If separate state identifiers
are created on the same hierarchical level, then they do not
influence each other when identifying their states. That is, the
states are independent across identifiers.

Besides this default mode, where content is created live and
ad-hoc depending on the current physical layout, there are
other ways to create and manipulate content. After creation,
states can be activated and deactivated manually to create
content for them. The UI then shows the captured point cloud
of the state, instead of the current physical point cloud, to base
the 3D content on. Furthermore, a real-time point cloud can
be recorded and played back, so that designers can navigate
through the 3D video and generate states based on certain
frames.

State system structure
Figure 3 shows the hierarchical structure of SpaceState. Ap-
plications are organized in states and sub states. States can be
active and inactive depending on whether the current physical
state matches the state that the state represents. Furthermore,
states contain content, which is active, if and only if, the
associated state is active. Consequently, the content of the
application is closely connected to the states and can be orga-
nized hierarchically as well. Multiple state identifiers in the
same states work independently (see for instance identifiers
A and B in Figure 3). For instance, a state identification of a
drawer in one part of the room should not influence the state
identification of a whiteboard position. These different modes
can be mixed arbitrarily and individually for each state when
setting up the hierarchical state system.

Root group

State group B.1 State group B.M

State contentState content

State identi�er B of root with M states

State group A.1 State group A.2

State content State content

State group A.N

State content

State identi�er A of root with N states

...

...
State group B.1.1 State group B.1.K

(Sub) content (Sub) content

(Sub) state identi�er B.1 with K states Sub identi�ers ...

Sub groups ...

... ...

Figure 3. Hierarchical structure of states including content. A state can
contain content to be displayed and/or interacted with. The contents are
active depending on whether their state is active, i.e., the physical space
is in the state or sub state that the defined state represents. Every state
has an associated score function to base the identification on. A group
can have multiple parallel state identifiers for their child-groups. This
implies that the states of one part in the room do not affect the states of
another part in the room.

DATA STRUCTURES AND ALGORITHM
This section describes the concepts and data structures for rep-
resenting the states. Furthermore, it deals with the algorithm
for identifying states in real-time. For the sake of simplicity,
we first describe the concepts and algorithm for identifying
one global state of the room. Afterwards, we discuss, how the
same algorithm generalizes to hierarchies of state identifiers
and independent states.

Definitions
We start by defining some basic mathematical representations
of different objects and concepts to be used to describe the
algorithm.

Point cloud Pt
We denote the point cloud that represents the physical space
at the current frame t as Pt ⊂ R3. The point clouds change in
real-time, generating a new Pt at each frame. They are used
for both, generating the states and identifying them.

Score functions
Given a point cloud, we define a score function for every point
in 3D space:

scoret : R3 7→ [0 .. 1] (1)

scoret(x,y,z) =
1

1+Dt(x,y,z)

whereas Dt is the distance to the closest point of the point
cloud:

Dt : R3 7→ [0 .. ∞[(2)

Dt(x,y,z) = min
p ∈ Pt
‖(x,y,z)T − p‖

Given a point in 3D space, the score outputs a value between
0 and 1 that describes how close the point is to the physical
surface. A value of 1 means the point is on a physical sur-
face. Whenever a state is created, the current score function is
captured and associated with the state.

Voxel grids
We divide the space into a regular grid of voxels. Each voxel
of a voxel grid is a cube with an edge length of sv, whereas
we used sv = 10cm for most examples, as this length has an
appropriate level of accuracy. The two corners gmin, gmax ∈R3,
which span the grids are chosen to cover the physical space.
The voxel size and the grid corners are the same for all grids
of an application. Each voxel grid contains Nv ∈ N voxels,
whereas Nv depends on the voxel size and the extends.

All voxels are indexed using i:

i ∈ Iall , where Iall = {1 .. Nv}

The center points of all voxels (voxelcenter : Iall 7→ R3) are
constant and independent of the voxel grid, i.e., the same index
refers to the same center point across all voxel grids.

Voxel grids are used in three parts of SpaceState, whereas
each have different purposes. (1) For regularizing the point
cloud (one global voxel grid that changes every frame). (2)
For storing information for each state (persistent voxel grid for
each state). (3) For storing information for the state identifier
(persistent voxel grid for each state identifier). All of these
will be described in the following.

Regularized point clouds
As a basis for calculating the score, we first regularize the live
point cloud. Regularizing means, that we assign an average
position to each voxel based on the points that it contains.

We define the i− th voxel’s point set as the set of points, which
are located within its boundaries, whereas each point lies in
exactly one voxel:

Pi = {p ∈ Pt | p lies within voxel i}
A voxel is called currently occupied, if it contains at least 5
points from the current Pt . We create a list of voxel indices of
the occupied voxels.

Ct = {i ∈ Iall | ‖Pi‖ ≥ 5}
We chose 5 as the minimum amount, since it worked well with
the voxel size, amount of cameras and level of noise in our
setup. The reliability of the algorithm is not very sensitive to
the chosen number. All points within the same occupied voxel
are averaged:

avrgpos : Ct 7→ R3 (3)

avrgpos(i) =
1
‖Pi‖

· ∑
p ∈ Pi

p

As a side effect of averaging the points for each voxel, noise
from the depth cameras is reduced. We further reduce noise
by smoothing the average positions and ignoring flickering
voxels, i.e., voxels that frequently switch between being above
and below the minimum point count of 5.

Throughout the application runtime there is always one voxel
grid containing the regularized and smoothed point cloud of
the current frame. That point cloud serves as input for iden-
tifying states and generating new states. The original point
cloud Pt is not needed anymore from this point.

State creation
As mentioned above, for the sake of simplicity we assume
that there is only one state identifier, when describing the
algorithm. The state identifier has Ns states, whereas we use
k ∈ {1 .. Ns} to refer to the k− th state of the identifier.

When the designer captures a new state, the current regularized
point cloud is not stored directly. Instead, we generate a new
voxel grid and create a discretized score function sk for the
state k. For each voxel, we store the score of its center.

sk : Iall 7→ [0 .. 1] (4)
sk(i) = score(voxelcenter(i))

Overall, si can be seen as a discrete pre-computed approxi-
mation of the score function (see Figure 4). Furthermore, for
each voxel we store the id of the closest occupied voxel.

From here, we will denote the point cloud and voxels that
change at every frame as live and preprocessed static state data
as pre-captured.

State identifier preprocessing
Some of the calculations for state identification can be pre-
processed to speed up the real-time identification. The pre-
processed data needs to be updated, whenever a new state is
added or changed, since this data depends on all states.

First, we iterate over all states of the state identifier and calcu-
late the relevance of each voxel. The relevance describes how
much the score function differs among all states:

ω : Iall 7→ [0 .. 1]
ω(i) = max

k ∈ Ns
{sk(i)}− min

k ∈ Ns
{sk(i)}

The result is a number between 0 and 1, which is the difference
between the maximum and minimum score across all states for
the voxel i. In principle, this value describes how much weight
this voxel has for the identification. Afterwards, we create a

Figure 4. Example score function. The picture shows a transverse
section, which visualizes samples of the score for the depicted point cloud.
The brighter a square is on the transverse section the closer it is to the
closest point on the point cloud.

set of relevant voxels, which have a minimum relevance:

Irel = {i ∈ Iall | ω(i)≥ 0.1}
This basically discards all voxels, which do not differ much
across states, e.g., voxels that are close to completely static
surfaces. Figure 5 shows relevant voxels of two example
identifiers. There are in fact more conditions for a voxel to
be relevant for the state identifier. We will discuss this in
Independent identifiers.

Real-time state identification
Given the preprocessed data and the live point cloud, the score
for a state can be computed. There are two main goals for the
algorithm: Firstly, it has to detect states even if the physical
objects do not perfectly match the pre-captured state, e.g., a
whiteboard like in Figure 6. Secondly, it has to be robust
with respect to points in the live point cloud that should not
influence the state, e.g., moving objects or people in the room.

The general idea for the score calculation is to check for each
point of the pre-captured surface, how far away the closest
point in the current live point cloud is. In other words, the
score is the sum of each pre-captured surface point’s distance
to the current point cloud over the whole pre-captured surface.
The solution is similar to finding point correspondences within
the Iterative Closest Point algorithm [3].

One direct approach would be to iterate over all occupied vox-
els of the pre-captured state and find the current closest point
in the live point cloud. However, due to the preprocessing,
it is a lot faster to find the closest point to the pre-captured
state, given a live point, i.e., the other way around. For this
reason, we instead iterate over each live point once and use the
pre-computed closest voxel index at that position in the grid.
That index is the index of the closest voxel in the pre-captured
data. We denote this as a live point being projected onto a
pre-captured voxel. For the closest voxel, we then store the
maximum score, i.e., if subsequent live points are projected

Figure 5. Relevant voxels of two independent state identifiers with two
states each. The first identifier distinguishes between the user position
relative to the whiteboard (green) and the second one tracks whether or
not a table is present (red). The opacity indicates the relevance. Note
that the relevant voxels of the table identifier (red) and the person loca-
tion (green) do not overlap so that they do not interfere. Highly relevant
voxels of the table remove less relevant voxels for the location identifica-
tion (see part of green volume, which is carved-out by red voxels). The
part between the two person locations is irrelevant, because these vox-
els could not distinguish between the person being left or right. A third
state would be needed (PersonMiddle) to fill out this part.

onto the same pre-captured voxel, only the highest score is
stored. Iterating over every point in the regularized live point
cloud to calculate the maximum score for the projected voxels
runs in linear time. Next, we simply sum up all the maximum
scores of the voxels in the pre-captured surface. This step
also runs in linear time, whereas in worst case the amount of
iterations is the number of the pre-captured occupied voxels
of the state.

This algorithm is tolerant towards slightly misplaced objects,
while ignoring objects of different shape. For instance, a
flat whiteboard, which is slightly shifted compared to its pre-
captured state will still receive a high score, since many live
points are projected to different voxels of the pre-captured
whiteboard. In contrary, if a person instead of a whiteboard
stands in that region, then that person will only contribute
little score to the whiteboard state. We will elaborate on the
robustness of the algorithm in Robustness test.

Independent identifiers
Previously, we described the algorithm for one state identifier,
i.e., for identifying one global state. A state group can have
more than one sub state identifier, which are then independent
of each other. For instance, state identifiers A and B in Figure 3
are independent. The relevant voxels of independent identi-
fiers of the same group influence each other. To make sure
the state identifications do not interfere, voxels are removed
from the identifiers so that voxel grids do not overlap across
identifiers. A concrete example is depicted in Figure 5. If a
voxel is relevant to multiple independent state identifiers, then
it is removed from all identifiers, except for the one where the
voxel has the highest relevance. This implicitly shapes vol-
umes in the physical space, within which states are identified
independently, e.g., the person and the table in Figure 5.

Performance
The state identification is the most critical part for performance,
since it needs to run at every frame. The voxel grids with pre-
calculated scores, which are generated for each state, allow
for very fast access during runtime. With our hierarchical
approach, only sub states of active super-states have to be
processed. Furthermore, independent state identifiers can be
executed in parallel.

Within each state score calculation, the biggest performance
bottleneck is the iteration over the large number of voxels.
Therefore, the data structures and the algorithm are designed
to minimize the amount of iteration steps. Firstly, the amount
of points is reduced during runtime by regularizing the live
point cloud. Secondly, it is never necessary to iterate over
all voxels in one loop during runtime. For instance, for every
new frame, we only reset and clear voxels, which have been
occupied in the previous frame by maintaining an array of
occupied voxel indices. This is particularly important, because
generally most voxels are unoccupied and do not need to be
reset. This heavily reduces the number of iterations.

CONTENT AND SUB STATE ALIGNMENT
When users switch between different physical arrangements,
i.e., when they switch between captured states, then the ar-
rangements might not exactly match the recorded states. For

instance, if designers capture a state of a whiteboard, then the
state will be identified, even if the whiteboard is not exactly
at the capture position. However, the content of the captured
state was specified relative to the captured whiteboard and it
might therefore be misaligned at runtime. Furthermore, sub
states might rely on the exact position of the whiteboard. For
instance, in Figure 5, the green relevant voxels always need
to be aligned with the whiteboard to reliably identify whether
the user is standing left or right relative to the whiteboard.
To address this, we apply the Iterative Closest Point (ICP)
algorithm [3]. In general, ICP takes two point clouds and
finds a translation-rotation-scale transformation between these.
Different variants exist for different use cases. In our case, we
only need rigid transformations (translation-rotation), but we
need to handle point clouds, which do not fully overlap, since
there are redundant or missing points in the live point cloud.
With this, we can align the contents of the currently active state
with the live point cloud as depicted in Figure 6. Furthermore,
sub state identifiers utilize the alignment to identify sub states
more reliably. SpaceState supports ICP refinement for states
with rigid objects.

The identified state together with the data, which is already
processed in SpaceState form a useful input for the ICP algo-
rithm for the following reasons:

• The identified state can be seen as initial guess for ICP, i.e.,
the algorithm is only executed for active states and therefore
it is likely that a rigid transformation can be found and that
only few iteration steps are necessary.

• The regularized real-time point cloud is reused for ICP
to heavily reduce the number of points. Only few locally
averaged representative points need to be aligned.

• Instead of aligning complete point clouds, only points
within relevant voxels need to be aligned. Instead of the
whole point cloud, only the relevant objects are mapped to
the captured data with a rigid transformation.

The last point is particularly important to increase speed and
robustness. For instance, if a whiteboard needs to be aligned,
then all points of other furniture like a couch have to be ignored
in the live data. In Figure 5, if the small table is misaligned,
then only the live points from within the red volume are con-
sidered for finding the transformation.

We run the ICP refinement at every frame to find the rigid
transformation from the live point cloud to the static captured
points of the currently active state(s). The resulting trans-
formation is then the inverse. Using the live point cloud as
source and the captured point cloud as static target followed
by inverting the transformation is much faster than the other
way around, since the captured point cloud contains a static
preprocessed voxelized distance function. We can reuse that
distance function for ICP to quickly find corresponding points
during iterative alignment.

We apply the resulting transformation in two different ways.
Firstly, all contents associated with the state are undergoing the
transformation to align them with slightly misplaced objects.
For instance, if a whiteboard contains projected content or

Figure 6. Example refinement based on ICP. The state for the white-
board has been captured as depicted with the blue circles (left). The
orange squares depict the live point cloud during runtime. The state is
still identified, even if the whiteboard is slightly off compared to its cap-
tured pose. Using ICP, the virtual whiteboard contents (gray surface)
and the sub states can be transformed to match the whiteboard’s pose
(right). Based on the concept of relevant voxels, the table (lower part) is
ignored during refinement.

interactive widgets, then these will be aligned to the physical
whiteboard. Secondly, the transformation is applied hierar-
chically, that is, all sub state identifiers within the currently
active state apply the resulting transformation to the point
cloud before identifying their states. For instance, if a table
can be elevated to switch between sitting and standing, then
ICP would first transform to the exact current elevation of the
table before states of objects on the table are identified.

IMPLEMENTATION
This section provides an overview of the hardware, software
and frameworks we used.

Hardware and software
In our example setup, we use three Kinect devices, each con-
nected to one PC to process RGB-D streams and transmit
them to the main PC, which runs the application. In addition,
we use a 4K projector for projecting high-definition content,
such as browser windows and text. SpaceState is implemented
in Unity3D using CSharp. The architecture of SpaceState is
based on the Velt framework [10]. The framework handles the
various streams of multi-RGB-D camera networks and gen-
erates point clouds in real-time. The SpaceState components
and algorithms are implemented as data flow nodes to follow
the pipes-and-filters architecture of Velt. RGB-D streams from
multiple devices are combined into the real-time regularized
point cloud and passed on to the main measurement node of
SpaceState. Furthermore, we implemented specialized nodes
and node group types to represent states and identifiers.

Example application
Figure 7 shows the structure and state system of the application
that we discussed in Example application. The contents of
the states are based on the built-in datatypes of Velt. These
include spotlights and renderers for RGB-D streams. A remote
machine streams RGB-D data from a single Kinect. The
communication with the remote machine is handled by Velt.
SpaceState directs the stream to the states, which are currently
active. States either generate an RGB-D-mesh to render a full
size version or a small textured quad mesh that simply shows
a region within the video stream.

Figure 7. The state system of our example application as rendered in the SpaceState user interface. The RGB-D data stream is received from a remote
machine. Depending on the active state, the stream is displayed at different locations and in different ways.

EVALUATION
SpaceState does not directly aim at end-users, but designers
of spatial user interfaces. Therefore, instead of a user study,
we evaluated our system on two separate levels. First, we con-
ducted an expert review to evaluate SpaceState from a spatial
user interface design perspective. Second, we conducted a ro-
bustness test by letting participants rearrange a physical space
multiple times to evaluate the reliability of the underlying
algorithms and data structures.

Expert review
We conducted an expert review to discuss the concept and
implementation of our approach. Overall, we wanted to find
out, whether the workflow is comprehensible.

We invited an external expert with more than ten years of
experience in 3D interaction design and projection mapping
systems. His primary tasks consist of content generation for
public installations. He took part in projects, in which he
designed, implemented and deployed interactive projection
mapping exhibitions.

The expert was greeted and introduced to the setup, concepts
and usage of the system. He was then asked to try out the
main functionalities by defining different states, sub states
and independent states. The expert found it generally easy to
define states and generate content for these states:

Once you’ve seen it, it’s quite easy to understand. [...] I
understand the concept, also about the nested identifiers.

We discussed, how it would differ, if the goal was to make
the prototype usable for end-users and not only designers. He
noted, that the system’s full capabilities are not accessible
to end-users in its current form. The functionalities would
need to be narrowed down and more visual feedback for users
is required. From that, we concluded that future extensions
would need to trade expressiveness for specialized function-
alities to make it end-user-friendly (we discuss this further in
Discussion and future work). The interviewer asked the expert,
whether he could imagine other future extensions.

[In our lab] we have been focusing on making the projec-
tions extremely precise. I think the combination of these
two ideas would be interesting.

Partially in response to that statement, we incorporated ICP
in our system for automatic alignment without markers (see
Content and sub state alignment).

The interviewer and the expert briefly discussed technologies
other than projectors:

You can [for instance] use the position of objects to
change the contents of your phone [...]. So it doesn’t
have to be projection mapping. [...] You can also use it to
control spatial audio. [For example] you can rearrange
the office to turn down the music.

Overall, the expert appreciated that the system works with-
out markers and without technology that is attached to the
furniture or people. He further stated:

I like the way that you can freely just arrange furniture
and then create states for it. I think that’s a new way of
thinking about it. You setup your environment and then
you just press a button and that’s your new system.

The interview with the expert makes us confident, that the
concept of SpaceState is comprehensible and can be used for
designing state-aware spatial user interfaces.

Robustness test
With this part of the evaluation, we wanted to investigate the
robustness of SpaceState based on physical layouts arranged
by external participants.

Data acquisition
The goal of the data acquisition was to gather point cloud
recordings of various participant-generated physical layouts.
The participants were informed that they were recorded. How-
ever, the experimenter did not inform them about the purpose
and functionality of the system, so as to not change partic-
ipants’ way of arranging the room, i.e, the participants did
not know that very distinct setups are easier to handle for

1) Annotated (ground truth)

2) Identified and correct (green) versus incorrect (red)

Only furniture pre-captured in state: 89% correctness

Furniture and people pre-captured in state: 96% correctness

Figure 8. Timelines of one example session in our performance eval-
uation. Within the whole duration of the timelines, the space was rear-
ranged multiple times and the usage was acted out for each. Each color
in the top parts of the plots represents one of the four states. Gray time
spans are transitioning times (rearrangements) and not part of the mea-
surement. The first timeline contain manually annotated states (1). We
created a tool to create timelines that compare the annotations with the
states that SpaceState identified (2).

the system. No state identification was running at this stage
as we only recorded depth streams. Eight participants (three
female) were invited subsequently to our test setup, which
initially only contained a couch and approximately 3x2 meters
of empty space. One experimenter was present to guide the
participants and annotate important events for the recordings.
Outside the test space, the experimenter provided a selection
of movable furniture like chairs, tables with wheels, a movable
whiteboard etc. In the first part, participants were asked to
arrange the physical space according to three different pre-
defined purposes: Meeting, Working alone and Lunch with
invited guest. Afterwards, they were asked to come up with
their own purpose and arrange the space accordingly (Custom).
For the Custom state, participants came up with arrangements
for small seminars with multiple chairs, watching movies as a
group, small social events including a bar counter and more.
In the second part, the participants were repeatedly asked to
reconstruct the four previously defined layouts. The experi-
menter randomly selected from the generated layouts that the
participant generated and subsequently asked the participant to
arrange the layout again. The participants were not informed
beforehand that they would need to arrange the same layouts
repeatedly. The experimenter referred to the layouts by name
and did not support the participants with memorizing the exact
layout. This led to some variations when arranging the same
layout. Figure 9 shows an example for a physical arrangement
that differs from the exact arrangement when it was arranged
the second time. Additionally, participants were asked to act
out the usage of each space, e.g., pretend they were working in
the Working alone setup. Overall, each layout was arranged 3
times. That is, the space was rearranged 12 times per session.
A session took about 30 minutes. With eight sessions, the
space was rearranged 96 times in total. After all participants
completed, we used the generated point cloud recordings for
subsequent steps in the performance evaluation.

Annotation and analysis
Based on the data acquisition, we first manually annotated the
time spans for each state in the recordings to form a baseline

Figure 9. During our evaluation, participants did not arrange the fur-
niture exactly in the same way after recreating layouts repeatedly. This
example shows a state with a table, a chair and a whiteboard. The par-
ticipant unknowingly put the whiteboard about 30 centimeters away (or-
ange) from where it was captured (blue). SpaceState still successfully
identifies the state, also while people move within it.

for the test. We excluded transition times or other situations
where none of the intended arrangements were in place, e.g.,
while participants were instructed. That is, the annotated time
spans include all times where the state was active, including
times in which people were moving around in the arrangement.
We then generated state systems based on each participant’s
arrangements, i.e., one state system per participant. Lastly, we
played back the annotated time spans of the recordings while
SpaceState continuously identified the states as if the point
clouds were live. While SpaceState was running, a separate
part of our system compared the identified states with the
manually annotated baseline and measured the amount of time
they were equal (see Figure 8).

Results and observations
The evaluation revealed that SpaceState was mostly able to
successfully identify states (approx. 93% over all frames, see
Table 1 for details), even if the arrangements were not per-
fectly aligned to the pre-captured data. There were, however,
some problematic state systems. States, which do not differ
much in terms of furniture do get mixed up occasionally. For
instance, one participant made Lunch and Work only differ in
terms of one additional chair, which was only partially visible
to the depth cameras. If the arrangement is then misaligned,
these states could not be identified reliably. Capturing users
in addition to furniture can help addressing this: Capturing
one person in the Work state and two in the Lunch state would
make the states differ a lot more and very easy to distinguish.

Meeting Work Lunch Custom

Meeting 22.91% 0.06% 2.47% 0%
Work 0% 27.14% 0.54% 0%

Lunch 1.9% 1.59% 21.23% 0%
Custom 0.31% 0% 0% 21.81%

Table 1. Confusion matrix of the states added up over all participants.
The rows contain the manually annotated states and the columns contain
the identified states. The percentages describe how long each entry was
active relative to the total duration. The lunch states were particularly
problematic as participants often made them resemble work or meeting
setups.

Figure 8 shows how the accuracy increases when capturing
users as well. There are, however, still a few wrongly identi-
fied frames in the timeline for the times when the pre-captured
users were not present. In that case, capturing a second varia-
tion of a state can be beneficial. Even though states can benefit
from capturing users, we only pre-captured furniture for our
final performance evaluation across all states in order to be
consistent. This means, e.g., we used the 89% from the exam-
ple participant in Figure 8 and achieved an overall accuracy
of 93% (correct frames divided by total frames of all partici-
pants). A designer would need to decide on a state-per-state
basis, whether the state is also defined by the location of users
and include or exclude them when capturing the state.

While not being a major problem, we noted that occasionally
important surfaces were occluded which led to a wrong state
identification in rare cases. We used three depth cameras in
our test. More cameras can be added to make the point clouds
less prone to occlusion and noise.

Overall, the results make us confident that SpaceState can suc-
cessfully identify states, even if arrangements do not exactly
match the captured states and even if moving users or objects
are present.

DISCUSSION AND FUTURE WORK
In this work we contribute to the area of spatial user interfaces,
with the objective of seamlessly blending virtual and physical
spaces. Our work starts from two fundamental assumptions.
First, we assume that physical spaces are frequently rearranged.
Second, we assume that rearrangement is not random, but
carries meaning. Therefore, we conclude that, in order to truly
blend virtual and physical, virtual content needs to adapt to
the “meaning” of the physical arrangement. Extracting and
representing the true meaning of a physical arrangement is a
very hard problem for artificial intelligence. We do not assume
that it can be solved in the near future. Thus, we decide to
circumvent the “meaning recognition” problem and leave the
interpretation of the scene to the human content designer. The
designer interprets what a certain arrangement means, and
designs the virtual content for it including its arrangement.
Our system then supports the designer by recognizing the
current physical layout and adapting contents, while keeping
the designer’s ideas about functionalities and aesthetics for
each of the purposes of the room. The concept can be applied
to many environments that get rearranged frequently, but it
has its limitations where it needs to be combined with more
specialized solutions. For instance, SpaceState can identify
states, e.g., to switch modes in a spatial user interfaces, but
fine-grained gestural interaction techniques would then be
needed for accurately manipulating virtual content.

Currently, the target group of SpaceState consists of designers
and not end-users. This means, that designers are creating
the application in the environment, where they want to deploy
the system and content can be programmed and extended. As
discussed in Expert review, a different direction would be to
build a more specialized system for end-users. A 3D user
interface with a set of standard widgets could allow users
to create and position content in physical space similar to
WorldKit [40]. We can extend this concept by letting users

position the content in different room states. The system
would then fully automatically infer, which physical layout is
associated with which combination of contents.

The algorithm works only based on 3D points. In the future,
we would like to experiment with additionally incorporating
surface normals or surface color for even more accurate state
identification. Furthermore, we would like to also explore
scales smaller than room-scale. The increasing availability
of close-range depth cameras like the Intel RealSense possi-
bly allow for identifying states of smaller objects, e.g., in an
assembly line.

Use cases other than content placement can be explored in
the future. SpaceState can support analyzing workflows and
provide information about whether processes are executed
properly. An inspirational use case is the work by Bhatia et
al. [4], who track the state of a surgery. Furthermore, working
with states can be useful for analyzing and annotating 3D
videos.

Lastly, based on the technical foundation provided in this
work, we plan to conduct long-term experiments with design-
ers or, with the above described extensions, with end-users.
Short-term user sessions will not be sufficient, as furniture is
normally not rearranged within minutes, but over longer time
spans. A deployment would therefore need to be implemented
over the time span of one week or more in a place with flexible
furniture, e.g., furniture with wheels or consisting of modular
furniture pieces. With such a deployment in a context where
the space is frequently reconfigured, we will be able to test,
to which degree SpaceState can successfully map the current
arrangement and hence meaning of the physical space to the
intended digital contents.

CONCLUSION
In this paper, we presented SpaceState, a system for designing
spatial user interfaces that can react to changes in the physical
environment. Designers develop virtual content and states
together with a drag-and-drop user interface. There is no
need for large data sets or 3D models to generate and identify
environmental states. Our approach is a step towards the
virtual world adapting to the meaning of the physical spatial
arrangement. Instead of adapting room arrangements to the
digital enhancements, our vision is to enable the design of user
interfaces that encourage users to articulate the physical space
around them according to the situation. Furthermore, if new
uses for a room emerge, then our approach only requires to add
new states ad-hoc instead of reprogramming the application.
Instead of constraining the physical environment to be static
to maintain alignment with virtual content, we utilize the
arrangement as input to synchronize the meaning of real and
digital. We hope that our approach contributes to a future
where virtual and physical worlds can be connected in a more
meaningful way than before.

ACKNOWLEDGEMENTS
The authors would like to thank the participants of the data
acquisition for the robustness test. This work has been sup-
ported by IFD grant no. 6151-00006B for the project entitled:
MADE Digital.

REFERENCES
[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown,

Nigel Davies, Mark Smith, and Pete Steggles. 1999.
Towards a Better Understanding of Context and
Context-Awareness. In Handheld and Ubiquitous
Computing, Hans-W. Gellersen (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 304–307.

[2] Michael Anderson and Tim Oates. 2010. A critique of
multi-voxel pattern analysis. In Proceedings of the
Cognitive Science Society, Vol. 32.

[3] Paul J. Besl and Neil D. McKay. 1992. Method for
registration of 3-D shapes, Vol. 1611.

[4] Beenish Bhatia, Tim Oates, Yan Xiao, and Peter Hu.
2007. Real-time identification of operating room state
from video. In AAAI, Vol. 2. 1761–1766.

[5] L. Chen, C. D. Nugent, and H. Wang. 2012. A
Knowledge-Driven Approach to Activity Recognition in
Smart Homes. IEEE Transactions on Knowledge and
Data Engineering 24, 6 (June 2012), 961–974. DOI:
http://dx.doi.org/10.1109/TKDE.2011.51

[6] Maria Danninger and Rainer Stiefelhagen. 2008. A
context-aware virtual secretary in a smart office
environment. In Proceedings of the 16th ACM
international conference on Multimedia. Citeseer,
529–538.

[7] Anind K. Dey, Gregory D. Abowd, and Daniel Salber.
2001. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware
Applications. Human–Computer Interaction 16, 2-4
(2001), 97–166. DOI:
http://dx.doi.org/10.1207/S15327051HCI16234_02

[8] Andreas Fender, Philipp Herholz, Marc Alexa, and Jörg
Müller. 2018. OptiSpace: Automated Placement of
Interactive 3D Projection Mapping Content. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 269, 11 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173843

[9] Andreas Fender, David Lindlbauer, Philipp Herholz,
Marc Alexa, and Jörg Müller. 2017. HeatSpace:
Automatic Placement of Displays by Empirical Analysis
of User Behavior. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and
Technology. ACM, 611–621.

[10] Andreas Fender and Jörg Müller. 2018. Velt: A
Framework for Multi RGB-D Camera Systems. In
Proceedings of the 2018 ACM International Conference
on Interactive Surfaces and Spaces (ISS ’18). ACM,
New York, NY, USA, 73–83. DOI:
http://dx.doi.org/10.1145/3279778.3279794

[11] M. Fradet, P. Robert, and P. Pérez. 2009. Clustering
Point Trajectories with Various Life-Spans. In 2009
Conference for Visual Media Production. 7–14. DOI:
http://dx.doi.org/10.1109/CVMP.2009.24

[12] K. Fragkiadaki, G. Zhang, and J. Shi. 2012. Video
segmentation by tracing discontinuities in a trajectory
embedding. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition. 1846–1853. DOI:
http://dx.doi.org/10.1109/CVPR.2012.6247883

[13] Bene GmbH. 2019. Bene Pixel - Ideas workshop.
https://bene.com/en/office-furniture-concepts/

office-furniture/en/pixel-ideas-workshop. (2019).
Accessed: 2019-11-05.

[14] A. Goh and R. Vidal. 2007. Segmenting Motions of
Different Types by Unsupervised Manifold Clustering.
In 2007 IEEE Conference on Computer Vision and
Pattern Recognition. 1–6. DOI:
http://dx.doi.org/10.1109/CVPR.2007.383235

[15] John Hardy, Carl Ellis, Jason Alexander, and Nigel
Davies. 2013. Ubi displays: A toolkit for the rapid
creation of interactive projected displays. In The
International Symposium on Pervasive Displays.

[16] Heartwork. 2019. Square System.
http://heartwork.com/product/square-system. (2019).
Accessed: 2019-11-05.

[17] E. Herbst, P. Henry, X. Ren, and D. Fox. 2011. Toward
object discovery and modeling via 3-D scene
comparison. In 2011 IEEE International Conference on
Robotics and Automation. 2623–2629. DOI:
http://dx.doi.org/10.1109/ICRA.2011.5980542

[18] Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish
Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair
MacIntyre, Nikunj Raghuvanshi, and Lior Shapira. 2014.
RoomAlive: magical experiences enabled by scalable,
adaptive projector-camera units. In Proceedings of the
27th annual ACM symposium on User interface software
and technology. ACM, 637–644.

[19] Michael Kazhdan and Hugues Hoppe. 2013. Screened
Poisson Surface Reconstruction. ACM Trans. Graph. 32,
3, Article 29 (July 2013), 13 pages. DOI:
http://dx.doi.org/10.1145/2487228.2487237

[20] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich,
and A. Kolb. 2013. Real-Time 3D Reconstruction in
Dynamic Scenes Using Point-Based Fusion. In 2013
International Conference on 3D Vision - 3DV 2013. 1–8.
DOI:http://dx.doi.org/10.1109/3DV.2013.9

[21] David Lindlbauer and Andrew D. Wilson. 2018.
Remixed Reality: Manipulating Space and Time in
Augmented Reality. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/3173574.3173703

[22] Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity
toolkit: prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology. ACM, 315–326.

http://dx.doi.org/10.1109/TKDE.2011.51
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1145/3173574.3173843
http://dx.doi.org/10.1145/3279778.3279794
http://dx.doi.org/10.1109/CVMP.2009.24
http://dx.doi.org/10.1109/CVPR.2012.6247883
https://bene.com/en/office-furniture-concepts/office-furniture/en/pixel-ideas-workshop
https://bene.com/en/office-furniture-concepts/office-furniture/en/pixel-ideas-workshop
http://dx.doi.org/10.1109/CVPR.2007.383235
http://heartwork.com/product/square-system
http://dx.doi.org/10.1109/ICRA.2011.5980542
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1109/3DV.2013.9
http://dx.doi.org/10.1145/3173574.3173703

[23] Remi Megret and Daniel DeMenthon. 2002. A survey of
spatio-temporal grouping techniques. Technical Report.
MARYLAND UNIV COLLEGE PARK LANGUAGE
AND MEDIA PROCESSING LAB.

[24] Taketoshi Mori, Katsutoshi Asaki, Hiroshi Noguchi, and
Tomomasa Sato. 2001. Accumulation and
summarization of human daily action data in
one-room-type sensing system. In Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, Vol. 4. IEEE, 2349–2354.

[25] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz.
2015. DynamicFusion: Reconstruction and Tracking of
Non-Rigid Scenes in Real-Time. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[26] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges,
and A. Fitzgibbon. 2011. KinectFusion: Real-time dense
surface mapping and tracking. In 2011 10th IEEE
International Symposium on Mixed and Augmented
Reality. 127–136. DOI:
http://dx.doi.org/10.1109/ISMAR.2011.6092378

[27] Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek,
and Andrew Wilson. 2016. Room2Room: Enabling
life-size telepresence in a projected augmented reality
environment. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work
& Social Computing. ACM, 1716–1725.

[28] Samunda Perera and Nick Barnes. 2013. Maximal
Cliques Based Rigid Body Motion Segmentation with a
RGB-D Camera. Springer Berlin Heidelberg, Berlin,
Heidelberg, 120–133. DOI:
http://dx.doi.org/10.1007/978-3-642-37444-9_10

[29] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake,
Lev Stesin, and Henry Fuchs. 1998. The Office of the
Future: A Unified Approach to Image-based Modeling
and Spatially Immersive Displays. In Proceedings of the
25th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’98). ACM, New
York, NY, USA, 179–188. DOI:
http://dx.doi.org/10.1145/280814.280861

[30] Albrecht Schmidt, Michael Beigl, and Hans-W
Gellersen. 1999. There is more to context than location.
Computers & Graphics 23, 6 (1999), 893 – 901. DOI:
http://dx.doi.org/https:

//doi.org/10.1016/S0097-8493(99)00120-X

[31] Young Min Shin, Minsu Cho, and Kyoung Mu Lee.
2013. Multi-object reconstruction from dynamic scenes:
An object-centered approach. Computer Vision and
Image Understanding 117, 11 (2013), 1575 – 1588. DOI:
http://dx.doi.org/https:

//doi.org/10.1016/j.cviu.2013.06.008

[32] Jochen Süßmuth, Marco Winter, and Günther Greiner.
2008. Reconstructing Animated Meshes from
Time-Varying Point Clouds. Computer Graphics Forum
27, 5 (2008), 1469–1476. DOI:
http://dx.doi.org/10.1111/j.1467-8659.2008.01287.x

[33] Jaeyong Sung, C. Ponce, B. Selman, and A. Saxena.
2012. Unstructured human activity detection from
RGBD images. In 2012 IEEE International Conference
on Robotics and Automation. 842–849. DOI:
http://dx.doi.org/10.1109/ICRA.2012.6224591

[34] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O.
Udrea. 2008. Machine Recognition of Human Activities:
A Survey. IEEE Transactions on Circuits and Systems
for Video Technology 18, 11 (Nov 2008), 1473–1488.
DOI:http://dx.doi.org/10.1109/TCSVT.2008.2005594

[35] Tim van Kasteren, Athanasios Noulas, Gwenn
Englebienne, and Ben Kröse. 2008. Accurate Activity
Recognition in a Home Setting. In Proceedings of the
10th International Conference on Ubiquitous Computing
(UbiComp ’08). ACM, New York, NY, USA, 1–9. DOI:
http://dx.doi.org/10.1145/1409635.1409637

[36] René Vidal, Roberto Tron, and Richard Hartley. 2008.
Multiframe Motion Segmentation with Missing Data
Using PowerFactorization and GPCA. International
Journal of Computer Vision 79, 1 (01 Aug 2008),
85–105. DOI:
http://dx.doi.org/10.1007/s11263-007-0099-z

[37] C. Vogel, K. Schindler, and S. Roth. 2011. 3D scene
flow estimation with a rigid motion prior. In 2011
International Conference on Computer Vision.
1291–1298. DOI:
http://dx.doi.org/10.1109/ICCV.2011.6126381

[38] Andrew D. Wilson and Hrvoje Benko. 2010. Combining
Multiple Depth Cameras and Projectors for Interactions
on, Above and Between Surfaces. In Proceedings of the
23Nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York,
NY, USA, 273–282. DOI:
http://dx.doi.org/10.1145/1866029.1866073

[39] Andrew D Wilson and Hrvoje Benko. 2016. Projected
Augmented Reality with the RoomAlive Toolkit. In
Proceedings of the 2016 ACM on Interactive Surfaces
and Spaces. ACM, 517–520.

[40] Robert Xiao, Chris Harrison, and Scott E Hudson. 2013.
WorldKit: rapid and easy creation of ad-hoc interactive
applications on everyday surfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 879–888.

[41] Jingyu Yan and Marc Pollefeys. 2006. A General
Framework for Motion Segmentation: Independent,
Articulated, Rigid, Non-rigid, Degenerate and
Non-degenerate. Springer Berlin Heidelberg, Berlin,
Heidelberg, 94–106. DOI:
http://dx.doi.org/10.1007/11744085_8

[42] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz,
Christian Theobalt, Matthias Nießner, Reinhard Klein,
and Andreas Kolb. 2018. State of the Art on 3D
Reconstruction with RGB-D Cameras. In Computer
graphics forum, Vol. 37. Wiley Online Library, 625–652.

http://dx.doi.org/10.1109/ISMAR.2011.6092378
http://dx.doi.org/10.1007/978-3-642-37444-9_10
http://dx.doi.org/10.1145/280814.280861
http://dx.doi.org/https://doi.org/10.1016/S0097-8493(99)00120-X
http://dx.doi.org/https://doi.org/10.1016/S0097-8493(99)00120-X
http://dx.doi.org/https://doi.org/10.1016/j.cviu.2013.06.008
http://dx.doi.org/https://doi.org/10.1016/j.cviu.2013.06.008
http://dx.doi.org/10.1111/j.1467-8659.2008.01287.x
http://dx.doi.org/10.1109/ICRA.2012.6224591
http://dx.doi.org/10.1109/TCSVT.2008.2005594
http://dx.doi.org/10.1145/1409635.1409637
http://dx.doi.org/10.1007/s11263-007-0099-z
http://dx.doi.org/10.1109/ICCV.2011.6126381
http://dx.doi.org/10.1145/1866029.1866073
http://dx.doi.org/10.1007/11744085_8

	Introduction
	Example application
	Walkthrough

	Related Work
	State identification
	Adaptive context-aware systems
	Spatio-temporal grouping
	3D and 4D reconstruction

	System
	User interface and workflow
	State system structure

	Data structures and algorithm
	Definitions
	Point cloud Pt
	Score functions

	Voxel grids
	Regularized point clouds
	State creation
	State identifier preprocessing

	Real-time state identification
	Independent identifiers
	Performance

	Content and sub state alignment
	Implementation
	Hardware and software
	Example application

	Evaluation
	Expert review
	Robustness test
	Data acquisition
	Annotation and analysis
	Results and observations

	Discussion and future work
	Conclusion
	Acknowledgements
	References

