
Velt: A Framework for Multi RGB-D Camera Systems
Andreas Fender

Aarhus University, Denmark
andreasfender@cs.au.dk

Jörg Müller
University of Bayreuth, Germany
joerg.mueller@uni-bayreuth.de

a) b) c)

Figure 1. Velt is a modular framework that facilitates the development of multi RGB-D camera systems and applications. a) A node-based GUI makes
it possible to inspect and configure local and remote camera streams at runtime. b) Velt generates configurable real-time point clouds based on modular
preprocessing. c) Velt has additional functionalities like streaming synthetic data and recording streams.

Abstract
We present Velt, a flexible framework for multi RGB-D cam-
era systems. Velt supports modular real-time streaming and
processing of multiple RGB, depth and skeleton streams in
a camera network. RGB-D data from multiple devices can
be combined into 3D data like point clouds. Furthermore,
we present an integrated GUI, which enables viewing and
controlling all streams, as well as debugging and profiling
performance. The node-based GUI provides access to every-
thing from high level parameters like frame rate to low level
properties of each individual device. Velt supports modular
preprocessing operations like downsampling and cropping of
streaming data. Furthermore, streams can be recorded and
played back. This paper presents the architecture and imple-
mentation of Velt.

Author Keywords
RGB-D camera systems; point clouds; framework; pipes and
filters

CCS Concepts
•Human-centered computing → Interactive systems and
tools;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISS ’18, November 25–28, 2018, Tokyo, Japan

© 2018 ACM. ISBN 978-1-4503-5694-7/18/11. . . $15.00

DOI: https://doi.org/10.1145/3279778.3279794

INTRODUCTION
Over the years, many researchers have built prototypes of 3D
user interfaces that combine multiple RGB-D cameras to cre-
ate point clouds or utilize skeleton tracking. Streaming and
combining multiple streams, which often includes network
communication, were mostly programmed by the researchers
themselves. Working with RGB-D camera SDKs is not dif-
ficult in itself and device agnostic frameworks like OpenNI
further simplify the access to streaming data from a device.
However, the complexity quickly increases when the system
uses multiple RGB-D cameras. The primary challenges of
building multi RGB-D camera systems are:

• Streams need to be transmitted via network in real-time.

• Streams need to be configured, processed and combined.

• Good performance and stability are required.

• The large amount of real-time data makes it difficult to keep
an overview and spot problems with the streams.

Especially for research prototype systems, not much time is
allocated for achieving stable and efficient streaming capabili-
ties. A naive and quick implementation might cause serious
performance bottlenecks and stability issues later on in devel-
opment. These might cause problems for the application and
user experience. Not only are there different types of streams
(typically RGB, depth and skeletons), but also multiple de-
vices to be synchronized. Conventional debugging techniques
like breakpoints and logging are not feasible due to the large
amount of real-time data. Existing toolkit solutions create
point clouds [12] or per-device surface reconstructions [9] in

https://doi.org/10.1145/3279778.3279794

System Point clouds Meshes Skeletons Record / Play Pipeline Inspection
RoomAlive [9] No Yes (GPU) Per device Basic Fixed Unity UI

LiveScan3D [12] Yes No No Yes Parameters 3D viewer
CreepyTracker [35] Limited No Merged No Parameters Unity UI

Velt Yes Yes (CPU) Merged Flexible Modular Inspector
Table 1. Comparison of Velt with the three most related toolkits and systems. All systems have a server-client architecture to read from multiple camera
devices. RoomAlive focuses on interactive projection mapping. LiveScan3D allows for recording point clouds. Creepy tracker is a toolkit for context-
aware interfaces. Velt focuses on flexible streaming and debugging capabilities. The framework generates point clouds and mesh reconstructions
based on depth streams. Skeleton streams from different devices can be merged into one world space representation. Playback functionalities include
adjusting playback speed and jumping to frames. The pipeline, including preprocessing, consists of substitutable modules. An inspector interface on
top of the Unity UI enables efficient setup and inspection of device streams.

real-time while allowing configuration of high level parame-
ters like density. However, to develop novel user interfaces,
configuring high-level parameters is often not sufficient.

To overcome these challenges, we built Velt, a flexible frame-
work for developing multi RGB-D camera systems. Velt is
based on a pipes-and-filters architecture that allows for con-
figuring high level parameters as well as extending and sub-
stituting particular streaming components. The Velt Inspector
interface provides access to each streaming component and
allows viewing and configuring streams as well as adding
operations. Our contributions are:

1. A framework for the fast, easy and robust implementation
of multi RGB-D camera networks. Velt facilitates develop-
ment of spatial user interfaces and concepts like implicit
input.

2. A GUI that enables adding streams and operations as well as
adjusting parameters. All of this is possible during runtime
without any pre-configuration.

3. A highly flexible and extensible system architecture. Velt is
applicable to RGB camera processing pipelines as well as
complex multi RGB-D camera systems.

Figure 1 provides an overview of Velt’s capabilities. In this
paper, we present the architecture of Velt. We discuss the core
functionalities, as well as more specialized capabilities, which
are all implemented in the current iteration. Furthermore, we
provide details about the implementation and performance
measurements. Lastly, we present use cases, applications and
extensions of Velt.

RELATED WORK
Many researchers have built interactive systems based on one
or multiple RGB-D cameras. Using depth cameras and skele-
ton tracking for interaction typically frees users from wearing
devices, potentially to a point where the interface becomes
invisible. We focus our attention to systems that utilize more
than only the skeleton streams of such devices. The general
unobtrusiveness of RGB-D cameras make them useful in the
context of medicine [36, 13, 3, 15]. Furthermore, RGB-D
cameras are often used for projection mapping and spatial
augmented reality systems [2]. For instance, Jones et al. [10]
utilize a Kinect camera for reconstruction and radiometric com-
pensation in their IllumiRoom system. Only comparatively
few systems utilize the full capabilities of multiple RGB-D
cameras in real-time. One exception is RoomAlive by Jones et

al. [9], which combines multiple Kinect cameras and projec-
tors. Room2Room by Pejsa et al. [25] uses RGB-D cameras
for a projection mapping based video conferencing application.
Lindlbauer et al. [16] use RGB-D cameras and a VR headset.
They reconstruct the environment in real-time and render it
into an immersive virtual scene with an altered appearance.
Lemkens et al. [14] built a scalable multi RGB-D camera net-
work to create point clouds. With this, the authors investigate
challenges like for instance interference of multiple structured
light depth cameras. Furthermore, work has been done on
large RGB camera networks for distributed vision-based track-
ing [20, 24]. For instance, Panoptic Studio by Joo et al. [11]
is a massive camera network consisting of 480 RGB cameras
for motion capture.

The remainder of this section deals with approaches to sim-
plify the development of RGB-D camera systems based on
generalized frameworks.

Multi RGB-D camera frameworks
While there are many systems utilizing RGB-D cameras, only
few provide a reusable framework. Table 1 compares Velt with
the most related frameworks. Wilson et al. [38] developed
the RoomAlive Toolkit, which generalizes from RoomAlive
[9]. Their toolkit consists of three parts: The first part is a
dedicated calibration application, which aligns depth cameras
and projectors. The second part consists of real-time RGB-D
and skeleton streaming capabilities. The third part is a projec-
tion mapping rendering pipeline, which simplifies the creation
of projection mapping applications. They generate meshes
based on the depth streams on the GPU during the render-
ing process using shaders. However, a software architecture
that is optimized for projection mapping makes it difficult to
utilize the framework for different use cases without chang-
ing the core system components. Our focus is on using the
stream data for purposes beyond rendering, e.g., for implicit
input [32]. The LiveScan3D open source system by Kowalski
et al. [12] works very similar to the streaming part of the
RoomAlive architecture, but generates point clouds instead
of reconstructions. CreepyTracker by Sousa et al. [35] is a
framework for combining multiple RGB-D cameras to enable
development of context-aware systems. However, they do not
focus on streaming capabilities, but only process the relatively
few points around tracked users. CreepyTracker’s function-
alities, which are specific to context-aware systems, can be
seen as complementary to the streaming capabilities of our
framework. The Proximity Toolkit [18] enables rapid proto-

typing of proxemic-aware systems. They add an abstraction
layer to support different sensor technologies and generate
high level proxemic context information between users in an
environment.

Some of the above mentioned toolkits incorporate some dis-
play technology, but primarily they focus on tracking and in-
teraction. Other toolkits mainly focus on enabling new display
technology, but integrate RGB-D cameras for input. Examples
include UbiDisplays [8] and ASPECTA [26].

While Velt also supports projection mapping and multi-
projector-multi-display environments, we will only discuss
the streaming capabilities of our framework in this paper. That
is, the focus is on Velt’s modular processing of camera stream-
ing data. We see calibration and rendering as separate parts
of a system, possibly implemented as modules or supported
by different frameworks. Velt has a simple default module for
calibration, but it can also import a calibration from RoomA-
live.

Device abstraction
There are previous systems with a focus on device agnostic
platforms. Streams and sensor data are abstracted and trans-
lated into higher level information. Rosen et al. [29] propose
a standard interface called HomeOS for different devices in a
smart home. Later on (in 2010), Microsoft developed an in-
frastructure with the same name [21] to support a wide range
of devices. ECCE by Belucci et al. [1] combines and abstracts
multiple sensor devices for easy physical programming. They
aim at non-programmers or beginners to enable prototyping
of simple applications. Schmalstieg et al. [31, p.389–393]
provide an overview for augmented reality frameworks that
utilize the pipes-and-filters pattern [22] to generalize 3D UI
input devices. Reitmayr et al. [28] present the OpenTracker
software architecture to unify data from different tracking de-
vices. MacWilliams et al. [17] present a similar approach for
distributed augmented reality systems.

These toolkits typically do not cope with the same amount of
real-time data as RGB-D streaming systems. Besides adding
layers of abstraction and hiding complexity, our goal is to
still allow for low level access and configurability of RGB-D
devices in real-time.

Dataflow GUIs
There are many user interfaces, which are organized in con-
nected nodes to represent objects, data flow, signals etc. This
type of interface has been used to process files [34], for simula-
tion [19], in music production [27] and in media compositing
[4]. Visual scripting interfaces like for instance Unreal En-
gine Blueprints [7] make use of visual nodes and edges as
well. Such interfaces focus on simplifying programming by
implementing logic through visual connections.

We chose a similar style for our Velt Inspector. However,
our user interface focuses on displaying and configuring real-
time RGB-D streams to manage the streaming input of an
application or to implement processing pipelines for camera
streams. We do not aim at fully replacing the need to program
application logic or specialized processing steps.

Figure 2. Overview of a system with one local and two remote Kinect de-
vices displayed in the Velt Inspector. The device nodes can be expanded
for detailed inspection and configuration. Each device creates local point
clouds (blue) and skeleton data (red), which are forwarded to the point
cloud or skeleton merger, respectively, to generate unified representa-
tions in world space. In the simplest case, applications connect to the
point cloud or skeleton merger and listen for updates.

EXAMPLE SCENARIO
In the following, we describe an illustrative scenario for the
development of a multi RGB-D camera system and a specific
application. A developer wants to create a room-scale pro-
jection mapping system in Unity. In particular, the system
should project up-to-date information about the contents of
closed drawers onto them whenever the user approaches. A
UI appears next to a drawer, whenever it is opened. The user
puts the object that she removed or inserted from the drawer
onto a dedicated highlighted area next to the drawer so that
the system can identify the object and update the information.

For a system like this, a set of RGB-D cameras would fulfill
multiple purposes. An approaching user could be tracked
easily based on skeleton tracking. Instead of equipping the
furniture with internal sensors, the drawers can be tracked
externally based on depth streams. Color streams are necessary
to identify the object to be inserted or removed. Multiple RGB-
D cameras can be used for good coverage of all furniture in the
room and to handle occlusions. These cameras are connected
to different machines of the setup. To improve performance,
the developer can choose to downsample the depth streams.
For the color streams, only a particular region needs to be
processed.

While previous toolkits like RoomAlive could easily and ef-
ficiently handle the rendering functionalities of this scenario
application, they would not be suitable for other parts of the
system. For instance, generating point clouds for processing
is not directly supported. Inspection of streams would be diffi-
cult and preprocessing functionalities like downsampling and
cropping would need to be implemented by replacing core
system components. We present a framework that is flexible
and generic enough to support functionalities like these in a
modular way.

SYSTEM ARCHITECTURE
Velt is implemented as a Unity plugin. The Velt system archi-
tecture is primarily based on a variation of the pipes-and-filters
software pattern (see for instance [33, 22]). We implemented
the pattern as a directed acyclic graph, where each node is an
operation and edges represent data flow. We refer to source
nodes and sink nodes when talking about nodes with no input

Depth

Infrared Skeleton

RGB color

Texture

3D points (device coordinates)

Figure 3. System with a local Kinect (left) and a remote Kinect (right). The figure is generated by the Velt Inspector. The clock triggers the devices’
source nodes. Each node generates or processes data. Data output is depicted as colored edges. Both Kinects contribute to the point cloud. For each
Kinect a mesh is generated in real-time. The textures of these meshes can be based on the RGB streams or the infrared streams. The local Kinect
applies operations like downsampling. Furthermore, it compresses the data before streaming it into file. Optionally, data can be downsampled already
before writing to the file stream. The local PC receives preprocessed and compressed data from remote machines via TCP through the RgbdClient
source node. The data can be directly forwarded to the RgbdFileOutput. This graph can be rewired depending on the application’s needs.

or no output data, respectively. A source node typically binds
an RGB-D device like the KinectV2. Figure 2 shows a system
with three Kinect devices as source nodes and the point cloud
as the sink. Within each device, data is processed as can be
seen in the expanded view of Figure 3. The source nodes are
triggered by a clock, which ticks at a chosen frame rate. Each
source node then triggers operations that transform the data
and forward it until it reaches the sink nodes. The main idea of
this architecture is to not only provide a simplified abstraction
layer and common functionalities, but to also allow developers
to implement modules that listen to data streams from any
node in the pipeline or to subsequently replace nodes with
their own operations.

Even though the architecture is not bound to particular RGB-D
devices, we focus on setups with multiple Kinect devices for
the sake of simplicity. We will discuss generalizations to other
devices and setups in later sections.

Inspector GUI
Our Velt Inspector GUI allows for inspecting and configuring
the system during runtime. The GUI displays nodes, which
can be opened to configure their parameters, disable or enable
functionalities and more. Nodes, which are not sink nodes,
have visually attached output ports. These can be opened to
inspect the data that the nodes produce (see Figure 4). Further-
more, nodes are organized in hierarchical groups that can be
collapsed and expanded to allow for different levels of granu-
larity. This way, the inspector can display on an overview level
(e.g., Figure 2), as well as on the level of every operation of
every device (e.g., Figure 3). To streamline working with mul-
tiple devices, groups can reference the same node structure, so
that processing pipelines can be defined once and then applied
to multiple devices, instead of redefining them for each device.
Furthermore, variables can be defined to share configuration
parameters of nodes among or within groups.

Networking
A typical multi RGB-D setup uses one main PC to run the
application and each RGB-D camera device is connected to a
separate PC to stream RGB-D data to the main PC [9, 12]. Al-
ternatively, one of the devices can be connected to the main PC
directly. We implemented a dedicated streaming program to
process and stream data via TCP to the main PC. All streaming
PCs process the RGB-D data using the previously described
modular pipes-and-filters architecture. That is, the Velt In-
spector interface on the main PC is also used to define nodes,
which are then executed on every streaming PC instead of the
main PC. For example, data can be downsampled before it
is being transmitted. The main PC has source nodes to re-
ceive TCP data (see Figure 3 right). The streams are further
processed and eventually accessed by the application.

CORE FUNCTIONALITIES
This section deals with built-in nodes and data types, which
are integrated as core functionalities of Velt. Applications can
connect to these nodes to receive callbacks.

Point cloud generation
Each device contains a DepthUnprojection node. It con-
verts a depth stream into a point cloud in the device’s local
coordinate frame based on the device’s camera intrinsics. The
PointCloud node (see Figure 2 bottom left or Figure 3 bot-
tom) receives the local point clouds from all devices. This
node then combines the points from all devices into a single
point cloud in world coordinate space using the cameras’ ex-
trinsics. Optionally, the points can be colored by projecting the
infrared or color streams onto them. This node also contains
a fast and simple voxel-based algorithm for regularizing the
point clouds. Redundant points are merged and averaged, if
they appear in the same voxel. This reduces the number of
points depending on the chosen minimal distance between
points.

Figure 4. The inspector GUI interface of Velt showing a simplified
setup with a local and a remote Kinect. Developers can add and edit
nodes and edges to create camera streams and apply operations. Nodes
can be expanded to configure their properties (see the remote downsam-
ple in the example). The output of nodes can be expanded to inspect
the data that they produce. In the example, the output streams of the
downsample operations are expanded.

Skeleton merging
Applications can connect to the skeleton output of each device
to receive skeleton data in the device’s local coordinate sys-
tem. However, in multi RGB-D camera systems, skeletons are
typically needed in a world coordinate frame. In particular, if
two devices see the same user from to different view points,
then the user should be registered as one user in world space.
We merge the different skeleton streams based on distance into
one world representation of skeletons similar to CreepyTracker
[35] or Li et al. [15]. One problem is, that a Kinect device al-
ways assumes that users face the camera, i.e., a person tracked
from behind creates a skeleton that is rotated 180 degrees. To
disambiguate between the two possible directions of a user,
we combine the skeleton streaming with face tracking, which
is included in the Kinect SDK. Face tracking also provides a
coarse head orientation.

Even though we use the term "skeleton", the used data struc-
ture is actually a generic graph, thus allowing for different
topologies of different devices (e.g., hand tracking devices).
However, in this paper, we focus on skeleton streaming. The
graph structure is primarily used for different human-skeleton
sub topologies. For instance, a Kinect skeleton has fairly many
joints to represent the user. However, an application might
only need the position of the head and the hands, or even only
the head. Therefore, the graph for representing the skeletons
can be configured to only stream necessary joints to simplify
development and to save resources like file stream size.

Recording and playback
Recording and playback of RGB-D streams are generally very
useful features, which is why many frameworks support this

functionality. One purpose is to record sessions, e.g., user
studies. Sessions can be played back with RGB-D and skele-
ton data. The application then reacts as if the streams were
live. Furthermore, file streaming in Velt is suited for other use
cases. In particular, development of room-scale applications
can be sped up significantly by having the ability to repeatedly
playback recorded interactions. Therefore, we added many
parameters for controlling the clock interface in Velt, which
in turn controls playback and the main application. Playback
can be slowed down or paused with keystrokes to progress
frame-by-frame. Conversely, a recording can be played back
as fast as computationally possible, to quickly test out a new
algorithm or different parameters on the same recording. Fur-
thermore, we allow for jumping to any frame at any time or
setting start and end frames for loop regions.

The recording functionality is also modular and provides some
parameters. Operations like downsampling can be applied
before writing into the file (to reduce filesize) or after reading
from the file at runtime. That is, files can be recorded in a
low quality and played back as is, or in a high quality and
downsampled during playback or as a mixture of both. For
instance, if developers are not sure about the required quality,
they can record in a high quality and downsample as needed
during playback. Compression can be applied as described
later in the Compression section. There are no restrictions
for changing the parameters of the nodes like for instance the
factor for downsampling during recording. The parameters
are included in the recording as well, i.e., Velt files are played
back properly even if parameters change during recording.

If a lot of data is recorded from multiple devices then file
streaming on the main PC might slow down the system perfor-
mance when writing to a storage device. If this becomes an
issue, developers can decide to start the recording locally on
each machine, instead of the main PC. The per-device streams
can then be combined as if they were recorded on the main
machine. This is similar to LiveScan3D [12].

Besides recording each device, we support recording merged
skeletons in their world-space representation, i.e., the output
of the skeleton merger. The skeleton merger is bound to the
clock as well, so it has the same playback capabilities as
described above. This allows for very lightweight recording
and playback of users. Additionally, different recordings can
be superimposed and played back in parallel.

Mesh generation
For each streaming device, a 3D mesh can be created based
on the unprojected depth data. The topology of the mesh
is already given due to the 2D array structure of the depth
data. Therefore surfaces can be reconstructed easily in real-
time. The meshes are generated as Unity meshes and can be
used for rendering and/or as colliders. Updating colliders is a
very slow operation in Unity and typically not possible with a
high resolution in real-time. To circumvent this, the flexibility
of the architecture allows developers to easily generate two
meshes depending on the needs: One mesh for rendering with
high resolution at high frame rates and a collision mesh based
on heavily downsampled depth data and/or at a much lower
frame rate.

Figure 5. Point cloud with decoupled source nodes. A depth camera
and two RGB cameras point at a table with a box on it. The depth cam-
era provides data to calculate the positions of the points. Two separate
close-range webcams provide color data. Using their extrinsics and in-
trinsics, the points can be colored. Black points are outside the FoV of
both cameras and have no color.

ADDITIONAL FUNCTIONALITIES
Developers can start simply by using default systems, e.g., by
placing a Kinect with default operations into their Unity scene.
They can then configure, combine, rewire and extend systems.
This section deals with exemplary configurations and system
setups that go beyond the default case of using Kinect devices
as source nodes.

Combining different camera devices
Using self-contained RGB-D cameras as source nodes for
the data flow is the default approach. However, color and
depth can also be completely decoupled. For instance, a depth
camera might only support depth streams or developers might
wish to use a different RGB camera than the one which is built
in. In that case, one or multiple calibrated RGB cameras can
provide the color data for the point clouds. This way, any depth
camera can be combined with any RGB camera, whereas there
is only little programmatic difference on the application level.
Figure 5 shows an example with a depth-only camera and two
RGB camera devices.

Furthermore, different source nodes that are based on different
depth camera devices can be combined without restrictions.
For instance, Figure 6 shows how a Kinect and a RealSense
camera are combined to create a focus+context point cloud.

Synthetic data
Especially in the early parts of a development cycle, it can
be very useful to have very controlled synthetic data as in-
put, instead of actual streamed data. Instead of using depth
cameras, the input for the point clouds can be synthetic data,
such as static or animated 3D models. Similarly, static or ani-
mated debugging skeletons can be created in the Unity scene
and are treated the same way as streaming data. Hence, de-
velopers can use clean 3D models and position skeletons in
a completely virtual scene and run the application. Besides
debugging, this can also be used to demonstrate a system’s
behavior in a stylized way or for generating descriptive figures.
Lastly, synthetic data can be mixed arbitrarily with live or
recorded data without any programmatic effect on the main
application. For instance, in Figure 1 (c) a virtual skeleton is

placed into the reconstruction of the real scene. Furthermore,
a virtual object (yellow sphere) contributes to the point cloud.

Delaying streams
When streams are combined from different camera devices
or transmitted via network, then these streams might have
different latencies. We implemented a ring buffer node, which
can delay streams by a given number of frames to synchronize
them with slower streams. To synchronize a system, all delays
must be set to synchronize with the stream that has the highest
latency. For instance, a number of frames can be set to delay
the low-latency local Kinect camera stream according to the
latency of remote streams. The point cloud generator will
then receive synchronized RGB-D frames of the same point in
time.

Refinement operations
We implemented some functionalities to correct and refine
streams. For instance, depth streams are especially noisy
towards the edges. Developers can crop depth streams to
remove these noisy regions and reduce the amount of data as
a side effect. Another example are erroneous skeletons: The
Kinect occasionally detects inanimate objects as skeletons,
often due to reflections. These can be removed before the
skeletons are further processed by masking these regions in
the streams.

Calibration
The intrinsics and distortion parameters of the Kinect cameras
can be retrieved from the SDK. The extrinsics can be adjusted
manually and/or calibrated. Velt can parse the XML output
of a RoomAlive Toolkit calibration to set the extrinsics of
the Kinect devices, including the transformations between the
internal RGB camera and IR sensor of each Kinect. How-
ever, this requires projectors and is therefore only practical,
if projectors are used anyway and high accuracy is needed.
Alternatively, Velt supports a simple OpenCV-based calibra-
tion method. The extrinsics can be estimated by placing a
checkerboard so that it can be detected by the Kinect devices.
The modular architecture allows for implementing or binding
more sophisticated calibration methods.

Figure 6. Focus + context point cloud as an example for combining
streams from two different depth camera devices. A Kinect camera pro-
vides depth streams from a distance to create a point cloud of the desk
and the surrounding area with moderate resolution (black dots). A close-
range RealSense camera enables creating a high-density region within
the focus area (red to orange). Depending on the needs of the applica-
tion, both devices contribute to the same point cloud or two separate
point clouds.

a) Lossless : Gradient (2), RVL (2.4) b) Half precision : LZ4 (4 to 6.2) c) JPEG (90% quality) : (13 to 16)

Figure 7. Mesh reconstructions of a downsampled, smoothed and compressed depth frame. The uncompressed size of the downsampled raw depth
frame is 256x212 short values = 108544 bytes. Each column has different degrees of information loss due to different compression approaches. The
numbers in brackets are approximate ranges of compression ratios (uncompressed size divided by compressed size). Note that these ratios differ
with different dimensions of the depth frame. Developers can choose a method that suits the speed, stream data size or precision requirements of the
application. (a) Lossless compressions. This category contains a simple gradient based approach and RVL. (b) The 2 bytes per depth value are reduced
to byte precision before applying compression. (c) Depth data is very sensitive to JPEG fragments. JPEG compression should only be used if very
coarse depth information is sufficient.

IMPLEMENTATION
This section provides some details about the implementation as
well as information about how to build applications with Velt.
We chose to implement the framework in the Unity3D game
engine, since its drag-and-drop IDE and direct manipulation
capabilities work well in conjunction with the purpose of Velt.
For instance, extrinsic parameters of devices are represented
as transformations of Unity GameObjects.

Creating nodes and data types
Developers can create new nodes and data types by imple-
menting C# classes that derive from the architecture’s base
classes for nodes and ports. This applies to source nodes,
operations and sink nodes. For instance, developers can bind
new RGB-D devices or replace operations like downsampling.
They can implement operations as needed by the application
like for instance a sepia filter for color streams and integrate
it as preprocessing. Nodes can be heavily specialized or can
be unrelated to RGB-D cameras. For instance, an operation
for unwarping image contents or a source node for streaming
desktop contents can be implemented. When implementing
new nodes or data flow types, widgets can be defined to view
and configure them in the inspector.

Compression
To reduce the network usage and file size, we apply image and
depth compression. We use well established image compres-
sion techniques like JPEG. For depth and infrared we bound
and implemented several compression methods to choose from,
where each has trade-offs between speed, stream data size and
precision. For example, if high precision is not necessary, in-
frared data can be converted to a gray scale image to then apply
JPEG compression. JPEG is often not feasible for depth com-
pression, due to a depth stream’s sensitivity to compression
artifacts. If speed is the foremost objective, a depth compres-
sion that reduces precision and applies LZ4 can be chosen.
For the general case, we bind the lossless RVL compression
[37], which has the overall best trade-off for depth compres-
sion in our experience. Figure 7 provides an overview of the
integrated depth compression methods.

PERFORMANCE
The architecture of Velt reduces the number of redundant op-
erations. Wherever possible only references are passed on,
instead of copying data. For instance, data is not unnecessarily
copied when it is needed by multiple nodes. Executing oper-
ations and passing on data comes down to method calls and
forwarding references. Hence, there is very little overhead,
since the computationally expensive parts are implemented
within the nodes (some of them in native C++). Elements for
debug output, e.g., image representations of depth streams, are
only generated whenever they are viewed in the inspector.

Multi-threading
The whole graph can be executed in a single thread or even
step-by-step to make debugging easier. However, per default
the graph is multi-threaded with an implicit fork and join exe-
cution. The clock triggers source nodes in separate threads. A
node that has multiple output ports creates threads for each out-
put per default. Nodes with multiple input ports are triggered
as soon as data from all input sources has arrived. Each node
has two essential callbacks to allow for easy multi-threading:
the asynchronous callback and the render thread callback. The
asynchronous callback is called whenever the clock ticks and
data arrives. This callback is meant for the main computa-
tions of the nodes. The render callback is called whenever a
frame is to be rendered, but only if there was an asynchronous
callback before. This is meant for nodes, which need to push
data into the rendering pipeline. As an example, the mesh
generator calculates the meshes’ vertices and indices in the
asynchronous callback parallel to the main loop. However,
vertex data can only be pushed to the GPU within the render
thread. Therefore, if there is a finished reconstructed mesh, it
is transmitted to the GPU within the render thread callback.

Performance tests
Our main setup runs on a gaming PC with an Intel Core i7
8700K CPU (6 cores, up to 4.6GHz across cores) and an
NVIDIA GeForce GTX 1080 Ti GPU. We use different ma-
chines and mini PCs for streaming, but they all preprocess and
send data at 30Hz.

Point cloud generation
We tested the system with 8 devices in a local network, where
each is streaming depth (512x424) and color streams (down-
sampled to 960x540 and using JPEG compression). The rea-
son for not using full-hd for the color streams is that the 3D
points are based on depth streams, which have a lower resolu-
tion than RGB and hence many pixels would not be utilized for
coloring the points. This is different when generating textured
meshes, where access to color data is interpolated between
points. The main machine receives approx. 400Mbps through
ethernet. In total, approximately 1,700,000 colored 3D points
are generated at every frame. Streaming and calculating all
world coordinates without rendering runs at approximately
28Hz in our local network including occasional frame drops.
However, depending on the rendering method, the frame rate
drops when displaying all points (we currently use the Unity
particle system for rendering the points). If the points should
be displayed, then defining a clipping volume heavily reduces
the number of rendered points and increases the frame rate.

Mesh generation
To form a baseline for our measurements, we chose to compare
the mesh generation performance with the release version
of RoomAlive Toolkit [38]. We measured and compared the
performance of streaming RGB-D data from 5 machines on a
local network to the main application, i.e., 5 RGB-D meshes
are generated. No Kinect was connected to the main PC. We
configured Velt to replicate the mesh generation functionality
of RoomAlive:

• Streaming depth at the native resolution without any down-
sampling, smoothing or similar.

• Streaming RGB at Kinect’s native full-hd resolution using
JPEG compression with 75% quality.

• Generating one textured RGB-D mesh per device including
normals and projected texture coordinates

The frame rates are very similar when comparing Velt and
RoomAlive (both between 12Hz and 14Hz). Note that the
measurements are based on the release version of RoomAlive
Toolkit and not more recent iterations (e.g., [16]). The pro-
cessing resources are distributed differently when comparing
both systems. RoomAlive generates the meshes mostly on the
GPU, i.e., whenever it is being rendered. Much processing
happens in the render thread, which slows down the Unity UI
and the overall render frame rate. Velt’s mesh generation runs
entirely on the CPU and none of the calculations are executed
on the render thread. The render thread is only used for trans-
mitting the finished mesh data to the GPU and hence the main
thread can be utilized fully by the main application. On the
other hand, GPU based approaches for mesh generation can be
beneficial for reducing latency. So far, Velt focuses on having
data available on the CPU, also for the mesh generation. This
makes it easier for further processing, analysis and operations
like raycasts. However, in the future we plan to provide a
GPU based RGB-D mesh and point cloud generation as an
option for applications, which focus on low-latency rendering
or further processing using compute shaders.

1a) 1b)

2)

3)

4)

Figure 8. Selection of applications and prototypes based on Velt. (1)
Rapid prototype: The combination of skeleton and depth streams makes
it possible to point towards a cursor, which is occluded from the user’s
viewpoint. (2) An extension, which records the room and clusters room
layouts over time. In the example, the room has been in three different
layouts throughout the recording. The fourth timeline contains transi-
tions. (3) Research project UIST’17: The system measures user view-
ing behavior and generates heat maps in space. (4) Research project
CHI’18: Based on the room’s geometry and surface visibility, the sys-
tem optimizes placement of projection mapping content.

VELT-BASED PROJECTS
Currently and in the past, we used Velt for several projects
ranging from simple rapid prototypes based on one RGB-D
camera to complex research systems. For instance, Velt was
utilized for a student project, in which students used the real-
time point clouds of Velt as input for Point Cloud Library
[30] to test and compare different surface reconstruction algo-
rithms. Figure 8 shows a selection of systems and applications
based on Velt. The research systems of the OptiSpace [5] (see
Figure 8.3) and HeatSpace [6] (see Figure 8.4) publications
are based on Velt and utilize many of its functionalities. Both
systems measure the physical environment and user viewing
behavior over time. The mesh reconstruction functionalities
of Velt were used, e.g., to identify which surfaces can be seen
from the users’ viewpoints. File streaming was used to facili-
tate testing of different measurement approaches on the same
recordings.

Example extension: room layout clustering
As an example for how to extend Velt, we implemented an
extension as a set of specialized nodes. Figure 8.2 shows a
screenshot. The extension first measures the room over time
and converts the point cloud into a voxel grid. At every frame,
a vector is created where each entry represents one voxel. The
values of the entries are the number of points contained in
each voxel. Afterwards, the different layouts of the physical
geometry are identified by applying clustering approaches like
k-means to the set of vectors of all frames. For instance, the
system generates states for different chair arrangements or
other room layout changes, without any prior knowledge of
the space. The extension then displays a timeline that shows
the different room layouts and when they where active (see
Figure 8.2 left). For every state, an approximation of the
room layout is visualized. One such visualization can be seen
in Figure 8.2 (right). This extension can be useful, e.g., for
creating 3D video annotations. Based on the extension, fast
state identification is a topic of future research.

DISCUSSION AND FUTURE WORK
This work strongly focuses on RGB-D devices and described
the architecture, nodes and data types for multi RGB-D cam-
era systems. However, Velt is also applicable to other camera
pipelines. For instance, nodes can be defined for applying
OpenCV operations to one or more local or remote RGB cam-
era streams. These streams can be displayed, recorded, de-
bugged etc. in the same way as was described in this paper.

In the future, the system can be extended in many directions
by implementing new nodes and data types. Specifically, this
would mean to support more RGB-D cameras like the Orbbec
Astra [23] and different types of sensors like the Leap Motion
to allow for any device ecology. Furthermore, there are many
possible operations to implement, such as a Kalman filter for
depth streams.

The Velt Inspector heavily simplifies working with Velt. How-
ever, the arrangement of nodes in the 2D GUI is still done
manually. Applying more sophisticated graph drawing al-
gorithms, real-time adjustments and editing capabilities will
improve and simplify arranging nodes in the inspector.

CONCLUSION
We presented Velt, a framework for multi RGB-D camera
systems. While there are many research prototypes based
on RGB-D streams, only comparatively few systems com-
bine multiple RGB-D cameras, since this is difficult to im-
plement properly and it introduces many system parameters.
Our framework is designed with a typical development cy-
cle of a room-scale spatial user interface in mind to facilitate
prototyping of multi RGB-D camera systems. The configura-
bility, inspection capabilities and playback functionalities of
Velt considerably speed up the development of systems. The
framework has been useful for implementing different types of
multi RGB-D camera systems ranging from rapid prototypes
to research projects that analyze physical spaces over time.
We are planning to provide Velt as an open source framework
in the near future.

ACKNOWLEDGEMENT
This work has been supported by IFD grant no. 3067-00001B
for the project entitled: MADE - A platform for future produc-
tion.

REFERENCES
1. Andrea Bellucci, Ignacio Aedo, and Paloma Díaz. 2017.

ECCE Toolkit: Prototyping Sensor-Based Interaction.
Sensors 17, 3 (2017), 438.

2. Oliver Bimber and Ramesh Raskar. 2005. Spatial
augmented reality: merging real and virtual worlds. CRC
press.

3. Nathan Burba, Mark Bolas, David M Krum, and Evan A
Suma. 2012. Unobtrusive measurement of subtle
nonverbal behaviors with the Microsoft Kinect. In Virtual
reality short papers and posters (VRW), 2012 IEEE.
IEEE, 1–4.

4. Christie. 2018. Pandoras Box.
https://www.christiedigital.com/emea/business/

products/media-servers/pandoras-box. (2018). Accessed:
2018-09-24.

5. Andreas Fender, Philipp Herholz, Marc Alexa, and Jörg
Müller. 2018. OptiSpace: Automated Placement of
Interactive 3D Projection Mapping Content. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 269, 11 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173843

6. Andreas Fender, David Lindlbauer, Philipp Herholz,
Marc Alexa, and Jörg Müller. 2017. HeatSpace:
Automatic Placement of Displays by Empirical Analysis
of User Behavior. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and
Technology. ACM, 611–621.

7. Epic Games. 2018. Unreal Engine Blueprints.
https://docs.unrealengine.com/en-us/Engine/Blueprints.
(2018). Accessed: 2018-09-24.

8. John Hardy, Carl Ellis, Jason Alexander, and Nigel
Davies. 2013. Ubi displays: A toolkit for the rapid

https://www.christiedigital.com/emea/business/products/media-servers/pandoras-box
https://www.christiedigital.com/emea/business/products/media-servers/pandoras-box
http://dx.doi.org/10.1145/3173574.3173843
https://docs.unrealengine.com/en-us/Engine/Blueprints

creation of interactive projected displays. In The
International Symposium on Pervasive Displays.

9. Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish
Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair
MacIntyre, Nikunj Raghuvanshi, and Lior Shapira. 2014.
RoomAlive: Magical Experiences Enabled by Scalable,
Adaptive Projector-camera Units. In Proceedings of the
27th Annual ACM Symposium on User Interface Software
and Technology (UIST ’14). ACM, 637–644.

10. Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D
Wilson. 2013. IllumiRoom: peripheral projected illusions
for interactive experiences. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 869–878.

11. Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,
Iain Matthews, Takeo Kanade, Shohei Nobuhara, and
Yaser Sheikh. 2015. Panoptic studio: A massively
multiview system for social motion capture. In
Proceedings of the IEEE International Conference on
Computer Vision. 3334–3342.

12. Marek Kowalski, Jacek Naruniec, and Michal Daniluk.
2015. Livescan3D: A Fast and Inexpensive 3D Data
Acquisition System for Multiple Kinect v2 Sensors.
318–325.

13. Gregorij Kurillo, Jay J Han, Alina Nicorici, and Ruzena
Bajcsy. 2014. Tele-MFAsT: Kinect-Based Tele-Medicine
Tool for Remote Motion and Function Assessment.. In
MMVR. 215–221.

14. Wim Lemkens, Prabhjot Kaur, Koen Buys, Peter Slaets,
Tinne Tuytelaars, and Joris De Schutter. 2013. Multi
RGB-D camera setup for generating large 3D point
clouds. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. IEEE,
1092–1099.

15. S. Li, P. N. Pathirana, and T. Caelli. 2014. Multi-kinect
skeleton fusion for physical rehabilitation monitoring. In
2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 5060–5063.
DOI:http://dx.doi.org/10.1109/EMBC.2014.6944762

16. David Lindlbauer and Andrew D. Wilson. 2018. Remixed
Reality: Manipulating Space and Time in Augmented
Reality. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA. DOI:
http://dx.doi.org/10.1145/3173574.3173703

17. Asa MacWilliams, Christian Sandor, Martin Wagner,
Martin Bauer, Gudrun Klinker, and Bernd Bruegge. 2003.
Herding sheep: live system for distributed augmented
reality. In Mixed and Augmented Reality, 2003.
Proceedings. The Second IEEE and ACM International
Symposium on. IEEE, 123–132.

18. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th annual

ACM symposium on User interface software and
technology. ACM, 315–326.

19. MathWorks. 2018. Simulink.
https://www.mathworks.com/products/simulink.html.
(2018). Accessed: 2018-04-02.

20. Henry Medeiros, Johnny Park, and Avinash C Kak. 2007.
A Light-Weight Event-Driven Protocol for Sensor
Clustering in Wireless Camera Networks.. In ICDSC.
203–210.

21. Microsoft. 2010. HomeOS.
https://www.microsoft.com/en-us/research/project/

homeos-enabling-smarter-homes-for-everyone/. (2010).
Accessed: 2018-03-29.

22. Microsoft. 2017. Microsoft Azure - Pipes and Filters
pattern. https://docs.microsoft.com/en-us/azure/
architecture/patterns/pipes-and-filters. (2017).
Accessed: 2018-03-29.

23. Orbbec. 2018. Astra. https://orbbec3d.com/develop/.
(2018). Accessed: 2018-04-03.

24. Johnny Park, Priya C Bhat, and Avinash C Kak. 2006. A
look-up table based approach for solving the camera
selection problem in large camera networks. In
Proceedings of the International Workshop on
Distributed Smart Cameras (DCS’06), Boulder, CO, Oct,
Vol. 31. 72–76.

25. Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek,
and Andrew Wilson. 2016. Room2Room: Enabling
life-size telepresence in a projected augmented reality
environment. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work &
Social Computing. ACM, 1716–1725.

26. Julian Petford, Miguel A Nacenta, Carl Gutwin, Joseph
Eremondi, and Cody Ede. 2016. The ASPECTA toolkit:
affordable full coverage displays. In Proceedings of the
5th ACM International Symposium on Pervasive Displays.
ACM, 87–105.

27. Miller Puckette. 2018. PureData. https://puredata.info/.
(2018). Accessed: 2018-04-03.

28. Gerhard Reitmayr and Dieter Schmalstieg. 2001.
Opentracker-an open software architecture for
reconfigurable tracking based on xml. In Virtual Reality,
2001. Proceedings. IEEE. IEEE, 285–286.

29. Neal Rosen, Rizwan Sattar, Robert W Lindeman, Rahul
Simha, and Bhagirath Narahari. 2004. HomeOS:
Context-Aware Home Connectivity.. In International
Conference on Wireless Networks. 739–744.

30. R. B. Rusu and S. Cousins. 2011. 3D is here: Point Cloud
Library (PCL). In 2011 IEEE International Conference
on Robotics and Automation. 1–4. DOI:
http://dx.doi.org/10.1109/ICRA.2011.5980567

31. D. Schmalstieg and T. Hollerer. 2016. Augmented Reality:
Principles and Practice. Pearson Education.
https://books.google.de/books?id=qPU2DAAAQBAJ

http://dx.doi.org/10.1109/EMBC.2014.6944762
http://dx.doi.org/10.1145/3173574.3173703
https://www.mathworks.com/products/simulink.html
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://orbbec3d.com/develop/
https://puredata.info/
http://dx.doi.org/10.1109/ICRA.2011.5980567
https://books.google.de/books?id=qPU2DAAAQBAJ

32. Albrecht Schmidt. 2000. Implicit human computer
interaction through context. Personal technologies 4, 2-3
(2000), 191–199.

33. D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
2013. Pattern-Oriented Software Architecture, Patterns
for Concurrent and Networked Objects. Wiley.
https://books.google.dk/books?id=rYiKY3mrrswC

34. Safe Software. 2018. FME.
https://www.safe.com/how-it-works/. (2018). Accessed:
2018-03-10.

35. Maurício Sousa, Daniel Mendes, Rafael Kuffner Dos
Anjos, Daniel Medeiros, Alfredo Ferreira, Alberto
Raposo, João Madeiras Pereira, and Joaquim Jorge. 2017.
Creepy Tracker Toolkit for Context-aware Interfaces. In
Proceedings of the 2017 ACM International Conference

on Interactive Surfaces and Spaces (ISS ’17). ACM,
191–200.

36. Rong Wen, Binh P Nguyen, Chin-Boon Chng, and
Chee-Kong Chui. 2013. In situ spatial AR surgical
planning using projector-Kinect system. In Proceedings
of the Fourth Symposium on Information and
Communication Technology. ACM, 164–171.

37. Andrew D Wilson. 2017. Fast Lossless Depth Image
Compression. In Proceedings of the 2017 ACM
International Conference on Interactive Surfaces and
Spaces. ACM, 100–105.

38. Andrew D Wilson and Hrvoje Benko. 2016. Projected
Augmented Reality with the RoomAlive Toolkit. In
Proceedings of the 2016 ACM on Interactive Surfaces
and Spaces. ACM, 517–520.

https://books.google.dk/books?id=rYiKY3mrrswC
https://www.safe.com/how-it-works/

	Introduction
	Related Work
	Multi RGB-D camera frameworks
	Device abstraction
	Dataflow GUIs

	Example scenario
	System architecture
	Inspector GUI
	Networking

	Core functionalities
	Point cloud generation
	Skeleton merging
	Recording and playback
	Mesh generation

	Additional functionalities
	Combining different camera devices
	Synthetic data
	Delaying streams
	Refinement operations
	Calibration

	Implementation
	Creating nodes and data types
	Compression

	Performance
	Multi-threading
	Performance tests
	Point cloud generation
	Mesh generation

	Velt-based projects
	Example extension: room layout clustering

	Discussion and future work
	Conclusion
	Acknowledgement
	References

